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ABSTRACT

A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean
interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated
in z-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through
an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of
potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various
constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on
the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of
satisfying these constraints.

1. Introduction

In ocean models used for climate studies requiring
integrations over centuries to millennia, the incorpora-
tion of mesoscale eddy effects can only be achieved
through parameterization, given the limitations of to-
day’s computers. In the present paper, we consider how
parameterizations motivated by quasigeostrophic theory
can be used to improve the treatment of eddy fluxes in
primitive equation climate models. We work in the
framework provided by Gent and McWilliams (1990),
in which the effects of eddies on the buoyancy field in
the nearly adiabatic ocean interior are accounted for
through a three-dimensional ‘‘eddy-induced velocity.’’
We discuss the appropriate boundary conditions for the
eddy-induced velocity, the difficulty in diffusive theo-
ries of ensuring downgradient transport of potential vor-
ticity and simultaneously conserving total buoyancy,
and the associated dynamic constraints on the horizontal
and vertical structure of the diffusivity.

Observations suggest that mesoscale variability is
closely tied to the baroclinicity of the large-scale flow.
Figure 1a shows the variance of sea level as obtained
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by TOPEX. Figure 1b is a plot of a baroclinic time scale
T, using the Levitus (1982) dataset. The growth rate of
baroclinic waves in the classic Eady and Charney mod-
els scales as f Ri21/2, where f is the Coriolis parameter
and

2N
Ri 5

2 2(] U) 1 (] V)z z

is a Richardson number based on the large-scale mean
flow U, V and the mean stratification N2. Held and Lar-
ichev (1996) argue that the vertical average of this
timescale T is representative of the timescale of the
energy-containing eddies even when eddy amplitudes
are much larger than mean shears:

v
22 2 21T 5 f Ri . (1)

We use this formula to generate Fig. 1b, with the vertical
average ( ) computed between 100 m and 2000 m, using

v

annual mean temperature and salinity fields, and com-
puting the shears from geostrophy. The rough agreement
between these two patterns encourages the idea that
baroclinic production is a major source of eddy activity
and that the relationship between baroclinicity and eddy
statistics may be fairly local in the horizontal. Visbeck
et al. (1997) recently used (1) in developing a param-
eterization and tested it successfully in a few idealized
flow fields on an f plane.

Quasigeostrophic (QG) theory provides a framework
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FIG. 1. (a: top) TOPEX rms sea-surface height variability averaged over 3 years (courtesy P. Y. Le Traon, Oceanography Group, C.L.S.). The
grayscale marks intervals of 2.5 cm from 5 to 30 cm. (b: bottom) Inverse timescale calculated according to (1) from the Levitus (1982) density
field. The vertical integral is from 2000 to 100 m. The grayscale marks intervals of 3 3 1027 s21 from 3 3 1027 s21 to 3 3 1026 s21.
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for studying baroclinic eddy production. In the context
of eddy flux parameterization, QG theory focuses at-
tention on the eddy potential vorticity flux and on the
horizontal fluxes of buoyancy at the ocean surface and
bottom. Studies of eddy–mean flow interactions using
QG models and concepts that are of particular relevance
to the following discussion include Green (1970), Rhi-
nes (1977), Rhines and Holland (1979), Marshall
(1981), Vallis (1988), and more recently Larichev and
Held (1995), Pavan and Held (1996), and Visbeck et al.
(1997).

We begin by discussing the transformed Eulerian
mean (TEM) buoyancy equation and the eddy-induced
velocity. The novel aspect of this discussion is the clar-
ification of the boundary conditions at the ocean surface.
We then motivate our focus on the buoyancy flux com-
ponent of the potential vorticity flux at the expense of
the relative vorticity flux. A brief review of factors that
can create upgradient eddy fluxes is followed with a
more detailed discussion of some difficulties in con-
structing a diffusive theory that 1) produces downgra-
dient potential vorticity fluxes, 2) satisfies the kinematic
constraint on the vertical integral of the potential vor-
ticity flux, and 3) satisfies the requirement that these
fluxes extract available potential energy from the basic
flow. Some issues that arise when implementing param-
eterization schemes of the kind described herein are
listed in the final section. We restrict the discussion to
the buoyancy equation in a Boussinesq model. The treat-
ment of tracer transport, including salinity and potential
temperature, is discussed by Gent et al. (1995, hereafter
GM95).

2. Eddy-induced velocities

We assume a separation between a mean flow (s) and
eddies (s9), where the mean may be considered as a
time-mean and space average over a period and scale
larger than the typical eddy scales, but smaller than
climatic scales.

In isopycnal coordinates, the potential density equa-
tion and the continuity equation are combined into an
equation for thickness, s 5 ]z/]b, where b 5 2gr/r0

is the buoyancy and z(x, y, b, t) is the height of a buoy-
ancy surface. Following Rhines and Holland (1979),
Andrews (1983), and Tung (1986), GM95 express the
eddy flux of thickness averaged on an isopycnal surface
as horizontal advection by the eddy-induced velocity
V**:

b
V9s9

V** 5 , (2)
bs̄

where A represents the average of A following instan-
b

taneous isopycnals. The resulting mean thickness equa-
tion in an adiabatic region is simply

b
b b] s̄ 5 2= · [(V 1 V**)s̄ ], (3)t b

where =b is the divergence taken on isopycnal surfaces.

An eddy flux closure in this framework consists of a
theory for V**. Any theory for this quantity will be
consistent with the adiabatic character of the dynamics
when used in (3). In particular, the mass between any
two isopycnals will be conserved. One would like the
z-coordinate model to share these features as closely as
possible.

Transforming (3) back to height coordinates, one ob-
tains

b b] b 5 2= · [(V 1 V**)b] 2 ] [(w 1 w**)b], (4)t z

where the vertical vorticities v** and v are obtained
b

from V** and V using the continuity equation, and =
b

is the horizontal divergence. Note however that this
equation is valid, not in z coordinates but in what might
be referred to as z coordinates, where z is obtained from
the mean, rather than instantaneous buoyancy profile.
By ignoring this difference, one can justify the use of
advection by a three-dimensional velocity field as the
parameterization of mesoscale eddies, with its horizon-
tal component V** equal to the isopycnal thickness flux
divided by the mean thickness (2).

This perspective leaves one with little guidance on
how to treat the boundaries. As an alternative, one can
start with the TEM buoyancy equation in z coordinates.
Following Andrews and McIntyre (1976) and Andrews
et al. (1987), the conservation law for mean buoyancy
in a Boussinesq model

]tb 1 V·=b 1 v]zb 1 =·V9b9 1 ]zv9b9 5 G (5)

can be rearranged, without approximation, into its TEM
form

]tb 1 (V 1 V*)·=b 1 (w 1 w*)]zb 5 G 2 ]zS, (6)

where

V9b9 ·=b
S 5 1 w9b9 (7)[ ]] bz

and where the three-dimensional ‘‘eddy-induced veloc-
ity field,’’ V* and w*, is defined as

v* 5 =·C, V* 5 2]zC, (8)

where

V9b9
C 5 . (9)

] bz

All direct diabatic effects on the mean flow have been
lumped into G. Here V and = refer to the horizontal
components of the velocity and gradient operator.

If the eddy fluxes are aligned along isopycnal sur-
faces,

V9b9·=b 5 2w9b9]zb, (10)

then S vanishes. If the interior of the ocean is adiabatic,
G 5 0, it is tempting to argue that (10) holds so that

]tb 1 =·[(V 1 V*)b] 1 ]z[(w 1 w*)b] 5 0, (11)
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but this is not an exact result. More precisely, the budget
for eddy buoyancy variance in the adiabatic interior is

2 2b9 b9
] 5 2V9b9 ·=b 2 w9b9] b 2 V ·=t z1 22 2

2 2 2b9 V9b9 w9b9
2 w̄] 2 = · 2 ] . (12)z z2 2 2

The special case of this equation for a zonally uniform,
small-amplitude wave train on a zonal flow is familiar
from studies of linear instability:

2b9 ¯ ¯] 5 2y9b9] b 2 w9b9] b. (13)t y z1 22

If the wave is growing, (13) leads to the familiar result
that the mixing slope for buoyancy is less steep than
the mean isopycnals; when the wave is decaying, this
slope is steeper than the isopycnals. For a statistically
steady, adiabatic, linear wave field satisfying (13) the
time-averaged eddy fluxes must lie along the mean iso-
pycnals. However, in the oceans, and in the atmosphere
for that matter, there is strong inhomogeneity of eddy
statistics following the mean flow. The effect of the
advection of variance by the mean flow in (12) in a
statistically steady state is similar to that of transience
in (13): if one can ignore the triple product representing
advection of eddy variance by the eddies themselves,
then, as one moves into a region of larger (smaller)
variance following the mean flow, the mixing slope must
be less steep (steeper) than the mean isopycnals. This
issue is discussed in a recent paper by McDougall and
McIntosh (1996).

At this point, one can try to fall back on a QG scaling
argument. Quasigeostrophic theory cannot be applied
to an entire ocean basin because of the limitations in-
herent in the standard theory with regard to the hori-
zontal variations of the Coriolis parameter and the static
stability (or isopycnal layer thickness). But one can hope
that the local eddy dynamics can be approximated with
QG theory so that it can provide useful insights into
mesoscale flux parameterization. In QG theory, the
buoyancy field b is linearized about a reference profile
with vertical gradient N 2(z), which can be identified with
the local value of ]zb. In the QG limit the TEM buoyancy
equation (6) reduces to

]b
21 V ·=b 1 (w 1 w*)N 5 G. (14)

]t

In this approximation the effect of horizontal eddy
buoyancy fluxes is represented through the vertical ad-
vection of buoyancy by w*. Horizontal advection by V*
is negligible in QG scaling, and S is negligible as well,
being of the order of the divergence of the vertical eddy
buoyancy flux.

The isopycnal eddy thickness flux V** (2) is closely
related to V* in the QG limit as well. One has, first,
the approximation

b b
V9s9 V9] b9z 2ø ø 2V9] (b9/N ). (15)b z2s N

This relation follows from the general considerations in
Charney and Stern (1962), who show that the dynamics
of the QG (pseudo) potential vorticity on z surfaces
mirrors the dynamics of Ertel potential vorticity on is-
opycnals. [The lhs of (15) is related to the flux of Ertel
potential vorticity on isopycnal surfaces, and the rhs to
the flux of QG (pseudo) potential vorticity on z-surfac-
es.] In proving (15), one has to consider that an eddy
defined on a b surface is not identical to an eddy on a
z surface:

b9
A9(x, y, z, t) ø A9(x, y, z , t) 2 ] A(z ) z , (16)0 z 0 z5z0¯] bz

where z0 is the height of an isopycnal in the mean state
and z is the actual height of that surface. In QG theory,
this correction is needed for the stability perturbation,
because it is assumed to be small compared to the mean
stability, but not for the velocity itself. It follows from
(15) and the thermal wind equation that

21 b9
V** ø V* 1 k 3 = , (17)

2f N0

where f0 is the Coriolis frequency. The final term in (17)
has zero horizontal divergence in QG theory, in which
horizontal variations in N2 are neglected. Therefore,
=·V** ø =·V*, implying that w** ø w*. Since ad-
vection by w* is the dominant term in QG scaling, this
is sufficient to show the sense in which (14) is the QG
approximation to (4).

One might thereby be tempted to use advection by
w* alone in the eddy flux closure, for consistency, but
this would not provide a model that is adequately adi-
abatic in the interior. Following Gent and McWilliams
(1990, hereafter GM90), we would like to retain the
advection by V*, while continuing to assume S 5 0 as
in (11), so as to achieve this goal.

McDougall and McIntosh (1996) provide a modifi-
cation to the TEM transformation, somewhat analogous
to a procedure used by Marshall and Shutts (1981) in
another context (see section 6) that helps circumvent
this difficulty. They show that by revising (9) to read

2V9b9 1 V b9
C 5 2 ] , (18)z[ ]] b ] b 2] bz z z

the contribution to S from the advection of variance by
the mean flow in (12) is cancelled exactly. This creates
a closer correspondence between the terms in the iso-
pycnal (4) and TEM (11) balances, helping to justify
the use of latter for eddy flux closure in z-coordinate
models. In quasigeostrophic scaling, in which fractional
changes in static stability are assumed to be small, this
modification of C would be neglected.

We will proceed under the assumption that the TEM
buoyancy equation with S 5 0 in the ocean interior,
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and with C approximated by (9) is adequate for me-
soscale eddy flux closures. Given the present lack of
theories for these eddy fluxes, it is difficult to imagine
the distinction between (9) and (18) as being significant
compared to the uncertainty in the closure itself.

It is worthwhile keeping in mind one curious point
from the preceding discussion: the advection by V** in
an isopycnal model is equivalent to three-dimensional
advection by a nondivergent velocity field in a z-co-
ordinate model; but vertical motion does not appear ex-
plicitly in the isopycnal formulation, while in the QG
approximation (14), vertical advection w*]zb is domi-
nant over horizontal advection, V*·=b.

3. Upper and lower boundary conditions

The rigid-lid boundary condition for the mean vertical
velocity is w 5 0 at the surface (z 5 0). However, w*
is generally nonzero at the surface, as can be seen from
its definition (8). The definition of v* is itself awkward
near the surface due to the division by ]zb, since ]zb
will be close to zero in the mixed layer. We are therefore
led to divide the domain into an interior region, within
which we assume that the mesoscale eddies are essen-
tially adiabatic, and surface layers, which contain the
mixed layers in which turbulent mixing and air–sea heat
exchange break this adiabatic constraint. The depths of
these layers (at both the upper and lower boundaries)
should be chosen somewhat larger than the depth of the
mixed layers predicted by the large-scale model, due to
the presence of the mesoscale eddy field, a point to
which we return below. We distinguish in the following
between the buoyancy fluxes due to mesoscale eddies
and those resulting from the small-scale turbulence due
to shear instabilities and convection. We assume that
these physical processes act independently and that the
small-scale processes are included in the forcing term
G on the rhs of (5).

We must, first, require that w9b9 vanish at the surface.
Assuming that the mixing slope makes a smooth tran-
sition from the isopycnal slope in the adiabatic interior
to its surface value, we write

V9b9
w9b9 5 2m(z) ·=b . (19)1 2] bz

Here m(z) is a function that passes from 1 to 0 as z
passes from the interior to the surface. Substituting this
expression into (6), one finds

] b 1 (V 1 V*)·=b 1 (w 1 w*)] bt m m z

1 (1 2 m)=·V9b9 5 G, (20)

where ( , ) are obtained as in (8), but withV* w*m m

V9b9
C 5 m . (21)

] bz

Note that now vanishes at the surface. The formu-w*m

lation remains valid when m (and the depth of the mixed
layer) depend on x, y, and t.

We must still deal with the difficulty resulting from
dividing by the stability in the surface layer. One al-
ternative is to set m to zero before reaching the mixed
layer. But this has the awkward consequence of creating
a strong horizontal eddy-induced mass flux immediately
below the mixed layer. It is more physically plausible,
and would cause fewer technical difficulties in models,
to spread this horizontal mass transport through the en-
tire surface layer. This can be achieved by setting

V9b9
, I , z , I2 1] bz

C 5

(22)

V9b95 m(z), I , z , 0,) 11 2] bz z5I1

(23)

where I1 (I2) is the boundary between interior and the
upper (lower) surface layer. An equation analogous to
(23) would hold near the lower boundary as well. If
there is a slope to the lower boundary, then m should
equal this slope at the boundary.

This treatment of the boundary condition has two
important consequences. On the one hand, it introduces
an eddy-induced horizontal mass flux in the upper and
lower surface layers. In the upper surface layer, in par-
ticular, the magnitude of this mass flux is

V9b9
M 5 . (24))1 2] bz z5I1

This mass flux appears as a surface d-function in qua-
sigeostrophic theory (Bretherton 1966). By assuming
that the mixing slope varies smoothly to its surface val-
ue, one spreads this mass flux over the surface layer.
On the other hand, one also introduces horizontal eddy
buoyancy fluxes into the surface layer through the term
(1 2 m)=·V9b9 in (20). The magnitude of the buoyancy
tendency due to advection by this surface layer mass
flux is zMzz=bz/d, where d is the depth of the surface
layer. The magnitude of the tendency due to the flux
divergence in the surface layer is zV9b9z/L, where L is
the horizontal scale of the eddy buoyancy flux. There-
fore, the ratio of the strengths of these two effects is

advection L z=bz L
ø ø a, (25))mixing d ] b dz I

where a is the slope of the isopycnals at the base of the
surface layer. This ratio is dependent on the depth of
this surface layer. If it is thin enough, eddy-induced
advection dominates over mixing.

Various treatments of the boundary condition have
been implemented in models that utilize the GM90 ad-
vective parameterization scheme. The approach de-
scribed above can be compared with that used by Dan-
abasoglu and McWilliams (1995). These authors use a
diffusive parameterization for V9b9, which does not van-
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FIG. 2. Schematic evolution of the density field at a fixed point.
Dashed isopycnals are not always present. The lowest densities are
not even present in the time-mean state, but the mass flux V9h9 as-
sociated with them does not vanish in general.

ish at the surface, but they effectively multiply this ex-
pression by the function m(z). Although they do not
discuss it in detail, the numerical scheme in Danaba-
soglu and McWilliams is equivalent to choosing d, the
depth of the surface layer, equal to the depth of the top
model level. This choice avoids the problem of dividing
by ]zbzm within the mixed layer, as long as the mixed
layer is assumed to be contained within this surface
layer, but this problem would emerge in a model in
which the mixed layer is resolved. In addition, Dana-
basoglu and McWilliams do not include a parameter-
ization of the divergence of the horizontal eddy buoy-
ancy fluxes in the surface layer, implicitly assuming that
the ratio in (25) is large.

Up to this point we have not assumed any particular
form of closure; the fluxes need not be diffusive or even
related to the local mean environment. However, in
models in which, following GM90, temperature and sa-
linity are advected by V* and diffused along isopycnals,
the diffusive effects on the buoyancy in the surface layer
will be handled correctly by suppressing the isopycnal
rotation of the mixing tensor near the surface.

The idea that horizontal buoyancy fluxes in the sur-
face layer have these two distinct effects is unfamiliar,
particularly with regard to the advection of buoyancy
by a surface-layer eddy mass flux induced by the eddy
buoyancy flux. It is useful to see how this mass flux
arises in isopycnal models as well. Consider the evo-
lution of the density field in an eddy-resolving isopycnal
model at a fixed point (Fig. 2). New isopycnals (lighter
fluid) can intermittently appear and disappear near the
surface, for example, as a warm ring is advected past.
They may not be present in the time-mean density field;
however, their mass flux must be taken into account as
part of an eddy closure scheme in a large-scale isopycnal
model. In the atmosphere, this surface eddy flux is very
important in midlatitudes, where most of the northward
interior mass flux in warm potential temperature layers
is returned as a southward surface flux in cold air out-
breaks. The potential temperature of the air in these
outbreaks is often lower than any potential temperature
found in the mean state; nevertheless, these layers have
to be taken into account in the global mass balance.

In an isopycnal model, one can proceed by distin-

guishing between layers that rarely outcrop at the point
in question and layers that appear only sporadically due
to mesoscale variability. The mass flux M in the sum
of the sporadic layers is related to the surface buoyancy
flux in the limit of small displacements. Considering
Fig. 2, the thickness variations h9 of this layer can be
approximated by 6b9/(]zb) and

V9b9
M 5 V9h9 ø 6 . (26)6 ] bz

This is identical to the integrated surface layer flux in
the z-coordinate model. If a mixed layer exists at the
surface, then ]zb in this expression must be chosen as
the stability beneath the mixed layer. This picture helps
justify the choice (23) in a z-coordinate model. In an
isopycnal model, an eddy closure would involve hori-
zontal mixing of the buoyancy in this ‘‘surface layer’’
as well, in analogy with the z-coordinate model.

This isopycnal picture also suggests that the boundary
between the interior and surface zones, which one is
tempted to place at the base of the mixed layer in the
z-coordinate model, should plausibly be lowered to the
depth of the boundary between sporadic and uninter-
rupted isopycnal layers. Note that an increase in depth
of the surface layer increases the importance of the sur-
face eddy flux divergence as opposed to the eddy-in-
duced advection in this layer.

4. Quasigeostrophic eddy fluxes

As is well known, the QG potential vorticity flux is
the sum of two terms, a vorticity flux and a flux of
‘‘thickness’’:

b9
V9z9 1 f V9] . (27)z 21 2N

The meridional component of the vorticity flux can be
manipulated into the form

2 2y9 2 u9
y9z9 5 ] 2 ] u9y9 (28)x y1 22

and similarly for the thickness flux

2b9 b9 y9b9
fy9] 5 2f] 1 f] . (29)z x z2 2 21 2 1 2 1 2N 2n N

Analogous expressions exist for the zonal component
of these fluxes. Equipartition between eddy kinetic and
available potential energy implies

u9 ø y9 ø b9/N. (30)

This scaling is typical of linear baroclinic instability,
but also continues to hold in very strongly unstable
flows (Larichev and Held 1995). If the eddy statistics
only vary on horizontal scales much larger than Nh/f,
where h is the vertical scale over which eddy statistics
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vary, it follows that the potential vorticity flux will be
dominated by the thickness flux and that

V9b9
V9q9 ø f] . (31)z 21 2N

Rhines and Holland (1979) offer a physical interpre-
tation of this equation in terms of the form drag exerted
by one isopycnal layer on neighboring layers.

If our large-scale model is not eddy-resolving, we can
assume that its grid size is larger than Nh/f, or, equiv-
alently, at this level of approximation, larger than the
deformation radius of the first baroclinic mode. Any
eddy fluxes produced by a closure scheme imbedded in
such a model can only vary on the larger resolved scales,
so the use of (31) seems justified. However, this ap-
proximation can still break down if the eddies are more
barotropic than implied by the equipartition assumption
(30), as can occur if the source of the eddies is an
essentially barotropic process. In particular, it is likely
that the relative vorticity fluxes generated by barotropic
mixing of potential vorticity f/H near sharp gradients in
the depth H can play an important role in large-scale
models, particularly near coasts (e.g., Holloway 1987).
However, we suspect that it is useful at this time to
separate this issue from that of the open-ocean eddy
buoyancy fluxes. The following sections are written as-
suming that (31) is valid and, in references to ‘‘potential
vorticity,’’ the neglect of relative vorticity is always
implied.

Given these approximations, a theory for the QG po-
tential vorticity flux and surface buoyancy fluxes pro-
vides us with a theory for eddy-induced velocities. Com-
paring (31) and (8), we have

V* ø 2f21V9q9 (32)

in the interior and

V9b9
21V* ø 2f ] m(z) (33)) z1 ¯ 2] bz z5I6

in the surface layers. One can then construct w* from
the continuity equation. The simplest choice for m of a
linear function of z results in a uniform distribution of
V* throughout the surface layers.

The approximation (31) leads to the following con-
straint on the QG potential vorticity flux in the adiabatic
interior:

II 11 V9b9
V9q9 dz 5 f . (34)E )2NI I2 2

In closures such as those discussed in section 5, in which
potential vorticity is diffused in the interior and buoy-
ancy is diffused at the surface, (34) imposes a strong
constraint on the vertical structure of the diffusivity.
Quasigeostrophic theory teaches us that density fluxes
at the surfaces are a key part of the eddy–mean flow
interaction and that they are intimately related to the

interior potential vorticity fluxes. In contrast, if the clo-
sure is expressed in terms of the buoyancy fluxes them-
selves (for example, if one diffuses buoyancy in some
way), then (34) is automatically satisfied.

We follow GM90 in transforming only the buoyancy
equation, and not the momentum equations. In the me-
teorological literature (Andrews and McIntyre 1976) the
momentum equations are generally transformed in an
analogous way as for buoyancy, at least in the familiar
application to zonally symmetric flows. This leads to
an equation in which momentum is advected by, and
the Coriolis force is computed with, the ‘‘total’’ velocity
field, the mean flow plus the eddy-induced flow, (VT,
wT), and in which the effects of eddies are accounted
for through a ‘‘force’’ in the momentum equations. In
the QG limit, the rotational part of this force is equal
in strength, and in a direction perpendicular to, the po-
tential vorticity flux itself. This suggests an alternative
approach to the incorporation of eddy fluxes, in which
the model flow variables are these ‘‘total’’ flows and
one need only model the total potential vorticity flux
by the eddies. The advantage of this approach is that
the relative vorticity and buoyancy flux contributions to
the potential vorticity flux can be treated in a unified
way. However, we see no clear advantage to transform-
ing the momentum equation unless relative vorticity
fluxes are being modeled in some way and do not pursue
this formulation here.

5. Diffusive closures

The intuition that eddy fluxes of a tracer should be
directed down the mean tracer gradient is at least partly
related to the presumption that there is a local balance
between the generation and dissipation of eddy variance.
In general, the QG eddy potential enstrophy balance
reads as follows:

2 2q9 q9
] 5 2V9q9 ·=q 2 V ·=t1 22 2

2V9q9
2 = · 2 D, (35)

2

where D, assumed to be positive, represents the dissi-
pation on the small scales generated through an enstro-
phy cascade. This budget differs from the comparable
variance budget for buoyancy in section 2 in two im-
portant ways: the inclusion of significant dissipation D
and the presence of two-dimensional rather than three-
dimensional advection. If one can ignore the advection
of eddy variance by the mean flow and the self-advec-
tion of eddy variance described by the triple moment
term, then, averaged over time, there must be a down-
gradient component to the potential vorticity flux at each
location:

V9q9·=q 5 2D. (36)

If these advective terms are not negligible compared to
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the dissipation, one should not expect downgradient
fluxes, nor should one expect a local relationship be-
tween fluxes and gradients.

In the special case of zonally symmetric mean flows
with zonally symmetric eddy statistics, often considered
as idealizations of the atmospheric general circulation,
there is no advection of variance by the geostrophic
flow, and one can confidently expect downgradient po-
tential vorticity fluxes. In such flows, it appears that a
local theory for the these fluxes can yield a very useful
closure (see Pavan and Held 1996). But in the more
general situation in which the variance has substantial
variation along mean streamlines, one must expect up-
gradient fluxes in some regions.

This effect is especially important for potential vor-
ticity because it is not a passive tracer. For example,
Lau and Wallace (1979) point out the consequences of
assuming that the eddies have a separable vertical struc-
ture (equivalent barotropic, in their terminology), V9 5
A(z) (x,y). The buoyancy and potential vorticity fluxesV9b
(continuing to ignore relative vorticity fluxes) can then
be shown to circle regions of maximum streamfunction
variance in an anticyclonic direction and to have no
divergence. Under these circumstances, the fluxes have
no special local relationship to the mean gradients. The
divergence of the potential vorticity flux must be due
to departures from this separable form. Since a single
baroclinic mode is often found to dominate the eddy
structure [e.g., during the MODE experiment, Richman
et al. (1977)], one should expect a potential vorticity
flux with a large rotational component in parts of the
ocean.

Marshall and Shutts (1981) make a closely related
point by assuming that the mean potential vorticity is
approximately conserved following the mean flow so
that there is a q 2 c functional relationship, wherec is
the mean geostrophic streamfunction. They show that
the eddy potential vorticity flux can then be divided into
two parts, F1 1 F2, where the variance production due
to F2 balances the advection of variance due to the mean
flow. The consequence is that the production due to the
remaining flux F1 balances the dissipation of variance
D (as well as the triple moment, self-advection term),
implying that F1 is more likely to be downgradient than
the total flux F. This is confirmed by a calculation of
F1 and F2 in an eddy-resolving quasigeostrophic model
by Marshall (1984). In addition, F2 can be defined as
purely rotational, so removing this flux has no effect on
eddy forcing of the mean buoyancy field.

The moral of these arguments is that one should not
be discouraged by eddy-resolving models that show
countergradient potential vorticity fluxes. The eddies
may be predominantly equivalent barotropic, and there
may exist a flux distribution that is everywhere down-
gradient that produces approximately the same forcing
of the mean circulation. Buoyed by this argument, we
feel that local theories in which the flux has a down-
gradient component at each location are an appropriate

starting point for improving mesoscale eddy flux clo-
sures in ocean models. The comparison between the
local baroclinicity of the oceans and eddy sea level vari-
ance in Fig. 1 provides further encouragement for a local
theory based on the baroclinic production of eddies. In
addition, any nonlocal closure should have a meaningful
local closure at its core, valid in those cases when there
is a local balance between eddy production and dissi-
pation, and it is important to experiment with this local
limit of the theory before adding the complexity of non-
locality.

It is natural to start with the simplest such local the-
ory, in which the interior QG potential vorticity and the
surface buoyancy fields are both diffused horizontally.
In the interior

V9q9 5 2k(x, y, z)=q, (37)

where

=b
¹q̄ 5 bj 1 f] , (38)z1 2] bz

and where j is a unit vector in the y direction. Consistent
with our discussion of the scaling, this implies that

V9b9 =b
V* 5 2] 5 k (b/f )j 1 ] . (39)z z1 2 1 2[ ]] b ] bz z

These expressions can be thought of as the z-coordinate
QG version of the isopycnal mixing of Ertel potential
vorticity Q 5 f/s:

b b
V9Q9 5 2k= Q .b

At the top and bottom boundary layers,

V9b9 5 2kb(x, y)=b,

where the diffusivity for buoyancy, kb, need not be the
same in the two surface layers.

The diffusivity has been assumed isotropic in the hor-
izontal here, but this is arbitrary and presumably in-
correct in detail even for those flows for which a local
theory is adequate. In general, the diffusivity will have
an asymmetric as well as a symmetric part, once again
raising the issue of advective versus diffusive effects of
mixing—and the symmetric, diffusive, part need not be
isotropic. We tentatively suggest a departure from iso-
tropic diffusion below.

This scheme differs from GM90, who set

=b
V* 5 ] k . (40)GM z[ ]] bz

First, the b effect should be included in the environ-
mental potential vorticity gradient. One would like an
eddy flux closure to be able to create homogenized
regions of potential vorticity, as in the numerical model
of Holland and Rhines (1980) and as seen in observa-
tions (McDowell et al. 1982) rather than regions of uni-
form thickness. Admittedly, the spatial structure of k
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cannot be arbitrary in this formulation, because if one
diffuses potential vorticity in a region with no baro-
clinicity, one will be creating isopycnal slopes where
there were none originally, thereby creating rather than
extracting available potential energy from the mean
flow. A horizontally uniform k is unphysical in our con-
text in which the eddy source is assumed to be baroclinic
production. A related concern is that one must be wary
of the singularity at the equator arising from the division
by f. We consider these problems as providing physical
constraints on the structure of k, as described below,
and not on the form of the equation.

Second, we have placed k outside, rather than inside,
of the vertical derivative with the same motivation of
staying as close as possible to potential vorticity mixing.
The scheme (40) of GM90 has the feature that v* is
local in z:

=b
w* 5 2= · k . (41)GM [ ]] bz

Using (39), we must obtain v* by a vertical integration.
Since the baroclinic production of eddies involves the
communication between different oceanic layers, there
is no a priori reason to expect a closure that is local in z.

The difference between having k inside or outside
the derivative is very clear in the QG limit, in which
advection by v* dominates over that by V* and the
static stability can be assumed to be horizontally uni-
form. In the QG limit the GM90 closure reduces to
horizontal diffusion of buoyancy in the interior:

]zb 5 2=·(k=b).w*GM (42)

This relation should be kept in mind when comparing
numerical experiments using the GM90 parameteriza-
tion with experiments using horizontal mixing of den-
sity; the difference between two such experiments
(which may be large on long time scales) is due only
to the additional advection by V* in GM and the influ-
ence of the boundary conditions. In an isopycnal model,
this distinction is between an eddy flux based on the
gradient of z (the height of an isopycnal surface), rather
than ]z/]r (the thickness).

These distinctions are also relevant when mixing co-
efficients are estimated from data or an eddy-resolving
model. For example, in the meridional direction on an
f plane,

y9b9 b
k(x, y, z) ø 2 ] ] (43)z yz1 2@1 2] b ] bz z

is an estimate based on mixing of potential vorticity and
compatible with (39), while

kGM(x, y, z) ø 2y9b9/]yb (44)

is the coefficient based on GM90’s assumptions. On-
going experiments in a simple primitive equation jet
model show that the diffusivity can have considerable

structure in the vertical, so that the two estimates give
very different results.

Finally, the diffusive closure as formulated here in-
cludes the horizontal diffusion of buoyancy in the top
and bottom surface layers. The presence of downgra-
dient horizontal buoyancy fluxes in the surface layer
arises from the existence of air–sea fluxes, as discussed
by Tandon and Garrett (1996), and also from the ten-
dency of surface density to cascade to small scales (i.e.,
McWilliams and Gent 1994). If we ignore air–sea heat
exchange for the moment, then within the QG approx-
imation surface buoyancy satisfies the same equation as
does potential vorticity near the surface. Therefore, sur-
face buoyancy will cascade to small scales in the pres-
ence of mesoscale geostrophic turbulence, just as the
potential vorticity is expected to do in the interior, with
the variance eventually being removed at small scales.
In this ‘‘nearly adiabatic’’ limit, one starts with the pic-
ture of surface buoyancy being diffused in the same
way as near surface potential vorticity. The interior and
boundary fluxes must be treated on an equal footing.

In the presence of damping due to air–sea heat ex-
change, this mixing of surface buoyancy will be mod-
ified; if the damping is strong enough, the eddy buoy-
ancy perturbations will be reduced in magnitude and the
mixing will also be reduced. Only in the unphysical
limit of fixed surface buoyancy is there no horizontal
eddy buoyancy flux at the surface.

Even with a diffusivity reduced from that in the in-
terior, surface mixing remains of central importance
since the mean gradient at the surface is strongly forced,
so that there is always something to be diffused. In
contrast, the interior potential vorticity gradient will be
removed in regions of weak forcing, especially in un-
ventilated layers, and the exact magnitude of the dif-
fusivity will be of relatively little importance to the
buoyancy field (Rhines and Young 1982). Especially
with respect to the effects of eddies on the poleward
heat transport, we expect that the surface diffusion may
be a very important part of such a closure scheme (Drijf-
hout 1994).

6. Constraints on the diffusivity

Two important constraints must be satisfied by the
diffusivities, both of which exist because potential vor-
ticity is not a passive tracer. First, the resulting fluxes
should be kinematically consistent, satisfying (34) in
the vertical column at each horizontal point. From the
perspective of the induced eddy velocity, this condition
is needed to ensure that w* in the interior can match
the flux divergence in both the upper and lower surface
layers so that total buoyancy is conserved. Stated dif-
ferently, one must be able to consistently generate an
eddy buoyancy flux at each point by integrating the
potential vorticity flux in the vertical.

Second, the fluxes should extract available potential
energy from the mean flow, also at each point since we



576 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

are attempting to mimic the consequences of local baro-
clinic eddy production. The expression of this constraint
is P . 0, where

I1 V9b9 ·=b
P 5 2 dz. (45)E ] bzI2

We integrate only over the interior adiabatic layer for
convenience, but the surface layers are presumed to be
thin anyhow. Using the thermal wind equation, =b 5
2f ]zW, where W 5 k 3 V, and integrating by parts,

II 11 V9b9 ·W
P 5 V9q9 ·W dz 2 f . (46)E )1 2] bzI I2 2

If (34) is satisfied, then adding a constant to the flow
field leaves (46) unmodified, in which case one can set
the barotropic component of the flow equal to zero in
this expression.

We have no theory for the structure of the diffusivity,
but we can tentatively propose some more or less ar-
bitrary ways in which these constraints can be satisfied.
We start by focusing on the requirement that the energy
production be positive. We choose a separable form for
the diffusivity

k(x, y, z) 5 kh(x, y)g(z), (47)

where the maximum value of g is unity, so that kh is
the maximum diffusivity in the water column. This form
allows us to discuss the questions of horizontal and
vertical structure of the diffusivity separately. We as-
sume for simplicity that surface buoyancy is diffused
with the same diffusivity as potential vorticity near the
surface. The rate of baroclinic energy production (46)
is then P 5 kh/ , where2T eff

II 11 =b ·W
22T 5 2 g(z)=q ·W dz 1 fg . (48)eff E )] bzI I2 2

If the diffusivity is independent of z (g 5 1) and if b
is negligible so that

=b
=q 5 f] , (49)z1 2] bz

then Teff 5 T defined by (1), as can be seen by integrating
by parts again, so that

I1 =b ·=b
22T 5 dz (g 5 1). (50)eff E ] bzI2

Following Larichev and Held (1995), we balance this
production with the rate of the barotropic inverse energy
cascade, V 3k0, where V is the rms barotropic velocity
and k0 the wavenumber of the energy-containing scale.
Balancing production and this cascade rate and assum-
ing kh ø V leads to the estimate, Teff ø (k0V)21 and21k0

1
k ø . (51)h 2k T0 eff

This construction provides an expression for kh consis-

tent with the scaling arguments in Larichev and Held
(1995) for the very strongly unstable limit in which the
diffusivity is independent of depth. Held and Larichev
(1996) also argue that, if the inverse cascade is halted
by the b effect, then k0 ø bT, but the relevance of this
scaling for the oceans is unclear and we leave the choice
of k0 open. In the case that k0 is chosen to be independent
of the vertical shear, this scheme is equivalent to that
proposed by Green (1970) and implemented recently by
Visbeck et al. (1997).

These arguments lead to the following proposal: giv-
en the vertical structure of the diffusivity g(z), compute

from (48). If the result is negative production, then21Teff

one can set 5 0. Given, in addition, an expression21Teff

for k0, compute kh from (51). This procedure has the
property of ensuring that the diffusivity vanishes
smoothly as the implied energy production decreases to
zero.

The kinematic consistency condition (34) presents a
constraint of the vertical structure of the diffusivity that
is more difficult to satisfy, especially if b is not ignored
in the potential vorticity gradient. In terms of the dif-
fusion coefficients, this constraint is

II 11 =b
g(z)=q dz 5 g . (52)E )1 2] bzI I2 2

We have again made the simplifying assumption that
the diffusivity for buoyancy at the boundaries is equal
to the diffusivity for potential vorticity near the bound-
aries.

This is a local constraint for the water column at each
horizontal location. This constraint is local because of
our neglect of the contribution of relative vorticity to
the potential vorticity flux. If the relative vorticity is not
neglected, one is only left with a global constraint on
the three-dimensional integral of the potential vorticity
flux. But this is an illusory freedom; if (52) is not sat-
isfied locally, one will be generating large relative vor-
ticity fluxes that are inconsistent with the scaling (30),
so these fluxes will be unphysically large. At this level
of approximation, we feel that it is safer and more con-
sistent to neglect the relative vorticity fluxes and try to
satisfy this local constraint.

One simple expedient is to choose g 5 1, a diffusivity
independent of depth. This will automatically satisfy
(52), but only if one ignores the contribution of b to
the potential vorticity gradient (49) and diffuses surface
buoyancy and the interior potential vorticity with the
same strength. Countergradient potential vorticity fluxes
might be created by this scheme due to the neglect of
b, but only in weakly unstable regions. In the strongly
unstable regions in which the diffusivities are the larg-
est, b may play a small role. In addition, as discussed
by Larichev and Held (1995), diffusivities should be-
come more and more uniform with depth as the flow
becomes more unstable. Therefore, a diffusivity that is
uniform in the vertical may be a useful simplification,
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despite the distortion of the eddy fluxes in weakly un-
stable regions that would result. This simplification has
been adopted with success by Visbeck et al. (1997).

Moving beyond a diffusivity that is uniform in the
vertical is surprisingly difficult. It may be useful in this
context to see how a linear unstable mode satisfies (52)
while producing downgradient potential vorticity fluxes,
an approach used by Green (1970). In principle, one
could take the vertical structure of the flow at each point
and formulate the pure QG baroclinic instability prob-
lem, ignoring horizontal shears. The flux in an unstable
mode must have a downgradient potential vorticity flux
at each z and will automatically satisfy (52), so one can
compute a consistent g(z). If the flow is stable, the dif-
fusivity can be set to zero. Even if one trusted the ver-
tical structure from the most unstable mode, say, this
algorithm is unlikely to be practical as it would pre-
sumably be too time consuming to solve an eigenvalue
problem whenever the diffusivities were needed. The
problem would then be to replace the explicit calculation
with an approximate theory that continues to satisfy
these constraints. We do not have such a theory.

A more satisfying approach, but far more impractical
yet, would be to integrate a homogeneous turbulence
model of the sort treated by Larichev and Held (1995),
for each point (!) in the large-scale model, by prescrib-
ing the appropriate environmental current structure as
a function of depth. The potential vorticity fluxes pro-
duced by this model will have a downgradient com-
ponent [the model is homogeneous by construction, so
there is no advection of variance in (35)] and would
provide a consistent local eddy closure. (One could even
argue that this is the only appropriate local closure ‘‘the-
ory.’’) But the problem of parameterization is that of
developing approximations for the fluxes produced by
this homogeneous model.

We can try to proceed more heuristically. Consider
first the case of a plane-parallel (zonal) mean flow, for
which we are only concerned with the meridional com-
ponent of (52). We can then use the expedient of for-
mulating a plausible set of vertical structures g(z, m)
dependent on a parameter m, choosing m so that the
meridional component of (52) is satisfied. This proce-
dure has the useful property that, if ]yq is of one sign
throughout the column and if the buoyancy gradients
are of the signs required by the Charney–Stern–Ped-
losky criterion for baroclinic stability (buoyancy de-
creasing poleward at the upper boundary and increasing
poleward at the lower boundary), then we will not be
able to find a value of m that will satisfy this constraint
(with positive g for all z) and would set the diffusivity
to zero. A related approach has been used by White and
Green (1984) in an atmospheric context.

In the appendix, we try to motivate a particular choice
for this set of vertical structures:

g }(1 1 mur)2, (53)

where ur is the baroclinic component (vertical mean

removed) of the zonal flow. This expression has the
intuitive property of generating a surface-intensified dif-
fusivity for the case of a surface-intensified baroclinic
jet. It seems to work well in predicting the vertical struc-
ture of the potential vorticity flux in some multilayer
homogeneous turbulence simulations (Larichev), but we
do not expect it to work well for all possible flows. For
weakly unstable flow, in particular, mixing will be con-
centrated near critical lines, where the dominant phase
speed of the eddies equals the mean current, and one
would be better off using a linear theory to estimate this
phase speed. The choice (53) is meant to apply to those
regions where the shears are strong enough to generate
eddies with a substantial barotropic component.

If the mean potential vorticity gradients change di-
rection with height, then the kinematic constraint (52)
is a vector equation that is more difficult to satisfy. In
general, it does not appear possible to satisfy this con-
straint while restricting oneself to isotropic diffusion.
One can see this by examining the simplest horizontally
homogeneous two-layer model of baroclinic instability,
for which the potential vorticity flux vectors in the two
layers must be equal and opposite, but the potential
vorticity gradients in the two layers need not be parallel
if the gradient of the interface height is not directed
north–south. In this kind of flow, unstable baroclinic
modes will produce potential vorticity fluxes that have
a downgradient component, but they cannot be oriented
exactly downgradient. This example suggests the option
of assuming that the the eddies are ‘‘polarized’’ so that
all eddy flux vectors in a particular water column at
different heights are parallel or antiparallel. The prob-
lem then reduces to the plane-parallel case described
above. But one is also left with the difficulty of choosing
this distinguished direction at each horizontal location.
Perhaps the structure of the unstable baroclinic modes
can be used as guidance in this regard. In addition, the
expression (48) for Teff would have to be modified ap-
propriately if the diffusivity is not isotropic.

7. Implementation

Several questions arise in the implementation of this
diffusive potential vorticity mixing in existing primitive
equation ocean models. We list several of these.

1) One must define the boundaries between the adia-
batic interior and the surface layers, in which the
buoyancy fluxes are not directed along the mean
buoyancy surfaces. In order to avoid dividing by a
zero static stability in the definition of the potential
vorticity gradient, these surface layers should, at the
minimum, contain the mixed layers generated by the
model’s parameterization of convective or wind-
driven mixing. While it can be argued that the pres-
ence of mesoscale eddies will effectively deepen
these layers, this is difficult to quantify, and it may
be adequate to place this boundary at the first vertical
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velocity grid point interior to the mixed region. This
boundary would then move in time.

2) For the horizontal structure of the diffusivity, we
suggest using the separable form (47) with kh given
by (51), with the timescale Teff defined by (48). The
choice of mixing length has been left open, how-21k0

ever. This choice can have profound effects of the
horizontal structure of the diffusivity. A crucial issue
is whether this scale is determined by 1) some Ross-
by deformation radius (as in the theory of Stone
1972), by 2) horizontal inhomogeneities of the mean
flow such as the ‘‘width’’ of a strongly baroclinic
zone (as in the theory of Green 1970 and as imple-
mented by Visbeck et al. 1997), or by 3) the process
that stops the inverse barotropic energy cascade, such
as the topographic or planetary beta-effect, as in
Held and Larichev (1996). The homogeneous sim-
ulations of Larichev and Held (1995) and Held and
Larichev suggest an appropriate choice is the smaller
of 2) and 3). However, we note that a choice of a
mixing length larger than the grid size is (at least
intuitively) inconsistent with the assumption of a lo-
cal relationship between fluxes and gradients.

3) The choice of vertical structure is even more prob-
lematic. The simplest alternative is to assume that
the diffusivity is independent of depth, while ignor-
ing the contribution of beta to the potential vorticity
gradients. Indeed, we have no explicit proposal for
an alternative that is workable in the general case of
nonparallel potential vorticity gradients, that would
be encountered within a large-scale model. It is not
easy to simultaneously satisfy the two constraints of
a potential vorticity flux that is everywhere down-
gradient and an eddy-induced velocity that conserves
buoyancy. In fact, in the general case in which cur-
rents change direction with depth, it does not appear
natural to try to satisfy these constraints with iso-
tropic diffusion. We have suggested one alterna-
tive—the assumption of ‘‘polarized eddies’’ that pro-
duce a flux in the same direction at all levels, but
we cannot advocate this strongly without further
study.

4) One must choose diffusivities for buoyancy in the
two surface layers, as well as for the interior potential
vorticity. The simplest assumption is that these sur-
face diffusivities are equal to the values used for
potential vorticity at the internal boundaries of these
layers. One expects the surface diffusivities to be
smaller, due to the damping arising from air–sea en-
ergy exchange, but estimating this reduction intro-
duces additional complexities. In the special case in
which one assumes a diffusivity that is uniform in
the vertical, one is constrained to diffuse surface
buoyancy with this same coefficient.

8. Concluding remarks
The advective parameterization of mesoscale eddies

in climate models has been considered from a quasi-

geostrophic point of view. We hope that our presentation
complements those of Gent et al. (1995) and Tandon
and Garrett (1996), who have recently addressed many
of the same issues. We have attempted to clarify the
boundary condition for the eddy-induced velocity at the
ocean surface and have stressed that the horizontal flux
of surface buoyancy has two distinct effects in this con-
text: the creation of eddy-induced mass fluxes in the
surface and bottom boundary layers, and a horizontal
mixing of surface buoyancy. We have discussed the dif-
ferences between the diffusive eddy flux closures based
on downgradient transport of potential vorticity/ surface
buoyancy, as motivated by quasigeostrophic dynamics,
and diffusion of interior buoyancy. We have also fo-
cused on the constraints imposed on the diffusivity if
one desires these fluxes to be physically realizable by
some (quasigeostrophic) field of eddies and if one re-
quires the eddy-induced velocities to satisfy natural
boundary conditions at the upper and lower boundaries
and conserve total buoyancy.

Data clearly show the inhomogeneity of the oceanic
eddy activity. Non-eddy-resolving climate models have
evolved to the point where this inhomogeneity has to
be taken into account, moving beyond globally uniform
diffusion coefficients. Horizontally variable and flow-
dependent diffusion coefficients appear to be a reason-
able next step, even if not fully satisfactory. Taking this
step should lead to significant improvements in climate
models in the near future, as the idealized models of
Visbeck et al. (1997) suggest.

Different issues arise concerning the horizontal and
vertical structures of a variable diffusivity. With regard
to the horizontal structure, if one assumes that the rel-
evant eddies are generated by local baroclinic produc-
tion, it seems appropriate to define a mixing coefficient
depending on some depth-averaged baroclinicity of the
large-scale flow, following the parameterization pro-
posed by Held and Larichev (1996), for example. We
have described how this approach naturally ensures that
diffusion coefficients will vanish in regions in which
energy cannot be extracted from the mean available po-
tential energy reservoir. This approach should be con-
trasted with Smagorinsky-type mixing schemes, in
which the strength of the diffusion is a function of the
horizontal shears or deformation, rather than vertical
shears of the mean flow, and the source of eddy energy
is implicitly the mean kinetic, rather than available po-
tential, energy.

The major source of uncertainty in the construction
of such models concerns the vertical structure of the
diffusivity for potential vorticity. The difficulty is that
a closure theory for the eddy-induced circulation (8)
must be consistent with the fact that V* is itself the
vertical derivative of V9b9/]zb. If one uses a closure
theory for V9b9 itself, there is no difficulty in conserving
buoyancy, but one can then generate countergradient
potential vorticity fluxes. If one diffuses potential vor-
ticity instead, but with an arbitrary vertical structure,
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one will be assured of downgradient transport, but one
will not conserve buoyancy unless the diffusivities are
appropriately constrained. In the general case, this ap-
parently requires a horizontally anisotropic isopycnal
diffusivity.

A fundamental issue related to the validity of closure
schemes of the sort considered here is that the available
potential energy extracted from the mean flow is pre-
sumed to be converted to eddy (kinetic plus potential)
energy and then dissipated, rather than returned to the
kinetic energy of the larger scale flow, as might be an-
ticipated in a weakly dissipative system. Schemes with
conservative energetics can be constructed by moving
away from simple diffusion, as in the ‘‘anticipated po-
tential vorticity mixing’’ approach of Sadourny and Bas-
devant (1985). Alternatively, one can imagine closure
schemes that contain appropriately designed stochastic
forcing on the smallest resolved scales, so as to generate
kinetic energy on these scales equal in magnitude to the
loss of available potential energy.

We have not touched upon questions of ‘‘cross-iso-
pycnal’’ mixing. Even if the cross-isopycnal mixing is
not directly due to mesoscale eddies, the smaller scales
that are responsible could still be organized by the me-
soscale eddy field, so that the cross-isopycnal mixing
coefficient could depend on one’s parameterization of
eddy activity (Tandon and Garrett 1996). In any case,
the first step is to develop plausible theories for eddy
scales and energy levels on the mesoscale.

Given these uncertainties, confidence in any closure
scheme will have to grow piecemeal through experi-
mentation with realistic global models and comparison
with eddy-resolving models of various levels of com-
plexity.
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APPENDIX

Vertical Structure of the Diffusivity

For a very strongly unstable flow that produces a
substantial inverse energy cascade, the eddies produced
should be nearly barotropic and the resulting eddy dif-
fusivity should be approximately independent of z. To
motivate a choice of a vertical structure for the diffu-
sivity in less strongly unstable situations, we perturb
away from this nearly barotropic limit. Assuming that
the barotropic component is still dominant, the baro-
clinic component of the potential vorticity generated by
the barotropic eddy flow will then be of the order of

ø 2(]q/]y)t ,21q9 kt 0 (A1)

where the mixing length is independent of height.21k0

The subscript t refers to the deviation from a vertical
mean. With similar expression for the buoyancy at the
upper and lower boundaries we find that

ø ut(z) 21c9 kt 0 (A2)

and

ø ut(z).y9t (A3)

For related arguments see Larichev and Held (1995).
We now assume that k has the vertical structure of

the total eddy velocity variance v92, which, in turn, is
written as the coherent sum of the constant barotropic
velocity V and the baroclinic velocity as estimated in
(A3):

2ur2 2y9 ø V 1 1 m* (A4)1 2V
2k } (1 1 mu ) . (A5)r

Here m, or m*, is a constant, independent of z introduced
to take into account the correlations between the baro-
tropic and baroclinic components of the flow and to
provide the freedom to satisfy (52). If the flow satisfies
the Charney–Stern criterion for stability, one will not
be able to satisfy the constraint (52) whatever the form
chosen for the diffusivity, as long as it is positive def-
inite.
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