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ABSTRACT

This paper details a free surface method using an explicit time stepping scheme for use in z-coordinate ocean
models. One key property that makes the method especially suitable for climate simulations is its very stable
numerical time stepping scheme, which allows for the use of a long density time step, as commonly employed
with coarse-resolution rigid-lid models. Additionally, the effects of the undulating free surface height are directly
incorporated into the baroclinic momentum and tracer equations. The novel issues related to local and global
tracer conservation when allowing for the top cell to undulate are the focus of this work. The method presented
here is quasi-conservative locally and globally of tracer when the baroclinic and tracer time steps are equal.
Important issues relevant for using this method in regional as well as large-scale climate models are discussed
and illustrated, and examples of scaling achieved on parallel computers provided.

1. Introduction

An explicit free surface method has been developed
for the z-coordinate Geophysical Fluid Dynamics Lab-
oratory (GFDL) Modular Ocean Model (MOM) (for
documentation of the model, see Pacanowski and Grif-
fies 2000). The scheme allows for the use of a free
surface with substantially improved stability properties
over the older approach of Killworth et al. (1991, re-
ferred to as KSWP in the following), as well as for
greatly improved conservation of tracers, such as heat
and salt, relative to either the KSWP or Dukowicz and
Smith (1994) approach. The result is an algorithm suit-
able for climate as well as regional ocean models.

The purpose of this paper is to present the method
and to discuss its physical and numerical properties.
Solution examples are provided of the Goldsbrough–
Stommel circulation (see Huang 1993) driven by surface
freshwater forcing, a baroclinic adjustment problem
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similar to that considered by Marsigli in the seventeenth
century (see Gill 1982), and a global ocean simulation.

Before detailing the algorithm and showing examples,
it is useful to provide some context for the present work.

a. Tracer conservation and freshwater forcing

For a Boussinesq fluid, volume conservation over a
vertical column yields the free surface height equation

]th 5 2= · U 1 qw, (1)

where h is the deviation of the fluid surface elevation
from its resting position at z 5 0; U 5 u dz is theh#2H

vertically integrated horizontal velocity, also known as
the transport; and qw 5 P 2 E 1 R represents a volume
flux per unit area (with units of a velocity) of freshwater
passing across the air–sea interface due to precipitation,
evaporation, and/or runoff. It is through this balance of
volume that dynamical assumptions, which affect h and
U, determine the ability of a model to faithfully rep-
resent freshwater forcing.

Many ocean models employ a constant volume. For
example, the rigid-lid approximation sets ] th 5 0,
thence eliminating fast barotropic waves. With this as-
sumption, volume conservation via Eq. (1) leads to the
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FIG. 1. Schematic of rectangular surface tracer and velocity cells
with the free surface. The tracer points are denoted by a solid dot
and the tracer cells are enclosed by solid lines; a velocity point is
denoted by an 3 and is enclosed by dashed lines. These points have
fixed vertical position z 5 z1/2 , 0, regardless of the value for the
free surface height. The thickness of a tracer cell is ht 5 2z1 1 ht,
where zk50 5 ht is the prognostic surface height determined through
volume conservation [i.e., the vertically integrated continuity equa-
tion (1)]. The thickness of a velocity cell is hu 5 2z1 1 hu, where
hu is determined by taking the minimum height of the four surround-
ing tracer cells, as prescribed by the partial cell approach of Paca-
nowski and Gnanadesikan (1998). Thicknesses of the cells are as-
sumed to be positive, so that 2z1 1 ht . 0. In models without an
explicit representation of tides, this constraint in practice means that
|z1 | must be greater than roughly 2 m. For models with tides, |z1 | may
need to be somewhat larger, depending on the tidal range considered.

balance qw 5 = · U, which forms the basis for the work
of Huang (1993). The corresponding barotropic dynam-
ics require both a streamfunction and velocity potential,
thus introducing two elliptic problems. Elliptic problems
are generally inefficient to solve, especially in the pres-
ence of realistic geometry, topography, and surface forc-
ing, and moreso on parallel computers (see section 5).
Bryan (1969) made the further assumption that the ver-
tically integrated velocity has zero divergence, resulting
in a zero vertical velocity at the ocean surface: w(z 5
0) 5 2= · U 5 0. This assumption eliminates the ve-
locity potential, yet at the cost of precluding a direct
freshwater forcing.

A free surface model, in principle, should trivially al-
low for the introduction of freshwater, since it only re-
quires the addition of qw to the free surface height equa-
tion (1). However, doing so consistently and conserva-
tively requires some changes to the baroclinic and tracer
equations that are not commonly made. To illustrate this
point, consider what conservation means for total salt in
a single grid cell in the special case of zero salt fluxes,
but generally nonzero fresh water fluxes. With rectan-
gular model cells (Fig. 1), salt is conserved if

]t(hts) 5 0, (2)

where ht is the thickness of a model tracer cell. Salt
conservation with a rigid lid, in which ] th 5 0, means

salinity is constant. For a free surface model, ht 5 |z1 |
1 h, where z 5 z1 , 0 is the bottom of the surface
tracer cell, and so salt conservation means (|z1 | 1 h)] ts
5 2s]th. When |z1 | k |h|, this equation is often ap-
proximated by |z1 |] ts 5 2s] th (e.g., KSWP; Dukowicz
and Smith 1994; Wolff et al. 1997; Marshall et al. 1997),
which generally precludes salt conservation whenever
the surface height changes, as through the addition of
freshwater [see Barnier (1998) or Gordon et al. (2000)
for a discussion of the virtual salt fluxes applied to con-
stant volume ocean models]. Such limitations are also
relevant for heat and other tracers. Our aim here is to
relax this approximation and to provide a conservative
scheme valid over a wide range of vertical resolutions,
including high resolutions where |z1 | ; |h|.

In principle, implementation of tracer forcing in flux
form is sufficient to ensure that tracer is globally con-
served. However, with time-dependent cell thicknesses,
details related to the discrete time stepping scheme, in-
cluding the use of time filters necessary with the three-
time-level leapfrog scheme, serve to preclude strict con-
servation. Additionally, global conservation is neither
necessary nor sufficient to ensure locally conservative
behavior. For example, consider an ocean at rest with
globally constant tracer concentration. Then allow a
wind to blow so to initiate velocity and surface height
fluctuations, yet do not introduce any tracer surface flux-
es. In addition to global tracer content remaining fixed,
the tracer concentration locally at every point in the
ocean will maintain the same constant value. This be-
havior provides an example of ‘‘local’’ tracer conser-
vation, which is not a necessary result of global con-
servation. Instead, it arises so long as there is compat-
ibility between tracer and volume budgets.

b. Splitting between fast and slow dynamics

For computational efficiency, primitive equation
ocean models aim to exploit the timescale split between
the fast barotropic gravity waves, which can propagate
at some 200 m s21, and the much slower (some 100
times slower) remaining dynamics. Such models ap-
proximate the barotropic mode by the depth-averaged
motion, and the baroclinic mode is approximated by the
deviation from the depth average. In a rigid-lid ocean
model, vertical averaging provides a clean split between
the fast and slow modes. In contrast, vertical averaging
does not completely separate out the fast dynamics in
a free surface model, since in this case the barotropic
mode is weakly depth dependent. The papers by KSWP,
Dukowicz and Smith (1994), Higdon and Bennett
(1996), Higdon and de Szoeke (1997), and Hallberg
(1997) provide discussions of these issues, which can
be quite subtle yet important for the purpose of provid-
ing a stable split between the fast and slow modes in
realistic ocean models. Additionally, details of this split
have crucial implications for the tracer conservation
properties of the model.
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c. Modeling context and summary of key results

MOM has traditionally been a rigid-lid ocean model,
where the streamfunction algorithm of Bryan (1969)
was used to solve for the barotropic component of the
dynamics. In the 1990s, important alternatives have
been added, including the explicit free surface of KSWP,
the rigid lid–surface pressure of Smith et al. (1992) and
Dukowicz et al. (1993), and the implicit free surface of
Dukowicz and Smith (1994). Version 3 of MOM (MOM
3) includes all of these algorithms within a single model
framework. There are numerous additional develop-
ments using a free surface in z-coordinate ocean models,
such as that used in the Ocean Circulation and Climate
Advanced Modelling project (OCCAM; Webb et al.
1998), where the KSWP scheme is refined, as well as
the Hamburg Ocean Primitive Equation (Wolff et al.
1997), Massachusetts Institute of Technology (Marshall
et al. 1997), and Océan Parallélisé (OPA; Roullet and
Madec 2000) ocean models, each of which employ an
implicit time stepping algorithm. The present paper is
the result of an effort to assess each of these free surface
schemes, and possible alternatives such as those of
Blumberg and Mellor (1987) and Mellor (1996), who
use a terrain-following coordinate model, and Bleck and
Smith (1990) and Hallberg (1997) who employ isopyc-
nal layered models.

When testing the various free surface methods, we
kept the following goals in mind: 1) MOM’s dynamical
core should provide a faithful representation of large-
scale ocean dynamics in an efficient manner for use in
both coarse (.18) and fine (,18) resolution global and
regional experiments. 2) Because of the increasing im-
portance of parallel computation, the model should scale
well as the number of computer processors increases.
3) The input of freshwater should occur naturally and
allow tracer conservation. As described in this paper,
our preferred approach is to use an explicit free surface
method, which is shown here to satisfy these three goals.

There are important differences between the free sur-
face method as described in this paper and the other
free surface methods currently in use with z-coordinate
models. First, the KSWP, Dukowicz and Smith (1993),
Wolff et al. (1997), and Marshall et al. (1997) ap-
proaches assume the top model box to have fixed vol-
ume for purposes of the tracer and baroclinic momentum
budgets, and so do not satisfy the third goal above.
Second, the OCCAM model (Webb et al. 1998) relaxes
this constraint, although details of their method are not
documented. As shown in this paper, allowing the top
box to change in time is necessary, but not sufficient,
to globally and locally conserve tracer when using a
free surface method. Details of the time stepping scheme
are crucial and warrant careful analysis. Third, the OPA
model also relaxes the fixed top cell volume constraint,
yet it employs an implicit approach that is arguably less
straightforward than an explicit approach, in addition
does not tend to perform as well on parallel machines

[though advances are available, as documented by Gu-
yon et al. (2000)].

d. Contents of this paper

This paper consists of the following sections. Section
2 describes the model’s discrete tracer equations. It high-
lights points concerning tracer conservation in the pres-
ence of a time-dependent surface cell. Section 3 de-
scribes the model’s discrete equations of motion and
details the time stepping algorithm for the barotropic
and baroclinic systems. Section 4 exhibits results from
idealized numerical examples that provide some prac-
tical illustrations of the method. Section 5 discusses
issues related to using the method in a parallel com-
putational environment. Section 6 finishes the paper
with conclusions.

2. Discrete tracer budget

The purpose of this section is to derive the discrete
tracer budgets within the free surface ocean model with
a time-dependent top cell volume. For orientation and
notation, Fig. 1 details a zonal-depth cross section of
the rectangular control volumes over which the model’s
surface equations are discretized. Notably, the position
of a grid point within a cell is assumed to be fixed in
time, hence maintaining the Eulerian nature of MOM.
However, the corresponding grid cell volume generally
changes according to temporal undulations of the sur-
face height. We do not make the approximation that the
surface height is small relative to any other length scale
in the model, including the ocean depth.

a. Continuous time tracer budget

Omitting meridional gradients for brevity, the con-
tinuous time budget for the total amount of tracer within
a discrete tracer cell (Fig. 1) is given by

]t(AhtT) 5 2dy( 2 ) 2 A( 2 ),x x z z˜ ˜F F F Fi11 i k21 k (3)

where T is the tracer per unit volume, that is, a tracer
concentration; A 5 dx dy is the horizontal area of the
tracer cell; ht 5 2z1 1 ht is the thickness of the tracer
cell; i denotes the zonal grid point and k the vertical;
and these labels are exposed only when needed. Also,
F̃ x is the thickness weighted horizontal advective and
diffusive fluxes, which are computed as in Pacanowski
and Gnanadesikan (1998) to account for the generally
space–time-dependent grid cell thicknesses.

In Eq. (3), is the vertical turbulent and advectivezF k

tracer flux that passes through the cell interface k, with
. 0 representing an upward flux of tracer. In par-zF k

ticular, represents the tracer flux through the time-zF k50

dependent sea surface zk50 5 ht. This flux involves ver-
tical tracer advection relative to the undulating sea sur-
face, which is induced by freshwater flux through the
sea surface, as well as parameterized turbulent flux:
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5 2 qwTk50.z z,turbF Fk50 k50 (4)

Here, must be calculated from a boundary con-zF k50

dition that equates this flux with the total tracer flux QT

entering the ocean from other component models, such
as atmosphere, river, and/or ice models. Generally QT

has a contribution from parameterized turbulence as
well as a tracer flux with freshwater,

QT 5 2 qwTw,turbQT (5)

where Tw is the tracer concentration in the freshwater.
Although Tw and Tk50 may be of the same order of
magnitude, the terms qwTw and qwTk50 stand for different
physical processes. The term qwTw represents the
amount of tracer passing through the air–sea interface
with freshwater, whereas qwTk50 represents the advec-
tion of tracer in the ocean relative to the sea surface.

Specification of the surface tracer flux involves details
of how the air–sea interface is modeled. A simple ‘‘clo-
sure’’ for the turbulence term, which is often used for
ocean-only simulations, is a restoring condition 5turbQT

ght(T1 2 T*), where T* is the reference tracer, g is an
inverse damping time, and T1 is the time-lagged surface
tracer concentration. For a more refined coupling of
ocean and atmosphere, the flux and the tracer Tw

turbQT

have to be prescribed, for example, by a boundary layer
model. For salt, which does not pass the sea surface and
is conserved exactly, 5 0 and Tw 5 0 is appropriateturbQT

(salt is considered in detail in section 2g). For other
tracers, approximations depend on the details of the
boundary layer model [a simple approximation is given
in section 2f; see also Pacanowski and Griffies (2000)
or Large and Pond (1981) for more discussion].

b. Time discretization

The question arises whether it is preferable to time
step the thickness-weighted tracer concentration htT or
the tracer concentration T. Tests with both approaches
were performed and showed negligible differences. No-
tably, as shown below, both approaches have the same
temporal order of accuracy, and so choosing one is a
matter of convenience. As time stepping T involved the
least changes to the existing MOM code, we detail that
approach in the following. A similar reasoning applies
to the momentum equation time discretization discussed
in section 3.

Dividing the tracer budget (3) by the tracer cell cross-
sectional area, and performing the product rule on
]t(htT), yields the tracer concentration budget

ht] tT 5 2]xF̃ x 2 (dk1Tk] th 1 2 ),z zF Fk21 k (6)

where dk1 is the Kronecker delta, which is nonzero only
for the surface cell when k 5 1. This budget is time
stepped with a leapfrog scheme along with a Robert
time filter (e.g., Haltiner and Williams 1980) to suppress
time splitting. When needing the cell thickness, the
thickness is set to that value at the current time step
ht(t).

c. Compatibility between volume and tracer budgets

Recall the example considered in section 1a, in which
an ocean at rest with an initially constant tracer con-
centration is perturbed via a wind stress yet without
tracer sources. Again, the solution should maintain the
same constant tracer concentration locally at each grid
cell, even as the surface cells undulate. To do so, it is
necessary for there to be compatibility between the vol-
ume and tracer budgets. In particular, upon setting the
tracer concentration to a constant, the tracer budget in
the surface grid cells must reduce to the discretized
surface height equation (1). Compatibility between the
budgets thus imposes a constraint on how to time step
the surface height, and such is detailed in section 3c.

d. Total tracer content in the discrete model

What is desired is the temporal combination of thick-
ness and tracer that measures the evolution of total tracer
content in the model. Details of the time stepping
scheme for both the tracer and surface height determine
the form of such a measure; indeed, whether or not it
exists. To illustrate these points, consider, as in the in-
troduction, a single tracer cell in the absence of tracer
fluxes. Doing so leads to the balance

h(t)]t T(t) 1 T(t)]t h(t) 5 0, (7)

where the superscript on the tracer cell thickness is sup-
pressed (h 5 ht). Use of a leapfrog scheme for both
tracer and surface height, with equal time step t , renders
the discrete conservation law

h(t)T(t 1 Dt) 1 T(t)h(t 1 Dt)

5 h(t 2 Dt)T(t) 1 T(t 2 Dt)h(t). (8)

Alternative time stepping schemes for either tracer and/
or thickness will necessarily lead to distinct discrete
conservation laws, or even to the inability to identify
such at all. We have explored a number of possibilities,
with the choice of leapfrog for both tracer and thickness
being the most natural way to provide compatibility
between the tracer and volume budgets.

As previously mentioned, an alternative is to leap frog
the thickness-weighted tracer hT, which in the absence
of boundary tracer fluxes leads to the discrete conser-
vation law:

h(t 1 Dt)T(t 1 Dt) 5 T(t 2 Dt)h(t 2 Dt). (9)

Importantly, both of the conservation laws (8) and (9)
are equivalent to second-order accuracy in Dt . That is,
they both reduce to ] t(hT) 5 0 at the same rate as Dt
is reduced. Hence, although nonstandard, the conser-
vation law (8) resulting from separately time stepping
tracer concentration and thickness is just as valid as the
alternative (9). Again, our choice for (8) is based on
convenience.

More generally, manipulation of the tracer concen-
tration budget (6), again assuming that both the tracer
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concentration and surface height are time stepped via a
leapfrog, leads, in the absence of boundary fluxes, to
conservation of the total tracer content as measured by

A [h (t)T (t 1 Dt) 1 d T (t)h (t 1 Dt)], (10)O ij k k k1 k k
ijk

where Aij is the horizontal area of a tracer cell. Again,
this measure of total tracer content is the same, to sec-
ond-order accuracy in Dt , as the analogous measure
realized via time stepping hT instead of T.

e. Local compatibility versus global conservation

The compatibility condition, which leads to a locally
conservative scheme, and global tracer conservation
cannot be simultaneously maintained with a stable three-
time-level discretization. For example, use of a time
filter on either the tracer (via the Robert filter) or the
surface height (via a time averaging procedure described
in section 3), preclude strict conservation of the total
tracer content given by Eq. (10). However, these filters
do not preclude local compatibility between volume and
tracer budgets. Alternatively, omitting the time filters
on the surface height and tracer in the tracer budget (11)
allows for exact global conservation, yet such breaks
the local compatibility so long as a time filter is used
in the surface height equation (11). We provide two
examples in section 4 that aim to quantify these points.
Given the inability to provide exact discrete local and
global conservation properties with an undulating free
surface and the leapfrog scheme, we generally believe
it prudent that conservation properties should be as-
sessed on a case by case basis.

Alternative time stepping schemes exist, such as two-
time-level schemes (e.g., Hallberg 1995, 1997), which
provide potential remedies to the issues raised here.
However, pursuit of such alternatives goes beyond our
present scope.

f. Comments on surface fluxes

It is useful to further elucidate the different terms
describing the surface tracer fluxes. For this purpose,
consider use of the free surface equation (1) and the
surface tracer flux expression (5), which provides the
relation

T1]th 1 5 T1]th 1 QT
zFk50

5 2 T1= · U 1 qw(T1 2 Tw).turbQT (11)

Notably, neither the tracer Tk50 nor the turbulent flux
are explicitly needed. Relatedly, the distinctionz,turbF k50

should be made between qwT1, which naturally appears
here in the relation (11), and qwTk50, which appears in
the expression for in Eq. (4).zF k50

Assuming that the tracer concentration in the fresh-
water is the same as in the surface cell, Tw ø T1, makes
the tracer time tendency independent of any explicit
freshwater forcing. Instead, the dependence is restricted

to the affects that freshwater has on the convergence
2= · U. This approximation simplifies the setup of
boundary conditions for the tracer flux. However, in
general Tw and T1 are distinct and so Tw may need to
be specified explicitly from data or another component
model.

g. The special case of salt

The air–sea interface effectively acts as an impene-
trable barrier for salts due to their large hydration en-
ergy. Therefore, neglecting the formation of sea spray
and the interchange of salt with sea ice, and in the ab-
sence of salt entering through the solid earth boundaries,
total ocean salt is constant. In turn, the salt concentration
ros within a grid cell, where s is salinity, changes only
through advective and turbulent fluxes from the interior
ocean, as well as time tendencies in the volume of the
grid cell. From the flux expression (5), a zero salt flux
through the air–sea interface formally represents a bal-
ance

5 2 qwsk50 5 Qs 5 0z z,turbF Fk50 k50 (12)

between the turbulent flux and advective flux. Discus-
sion of this balance has been given by Huang (1993)
and Dewar and Huang (1996), where the turbulent flux
was called an antiadvective flux. On the atmosphere side,
both the advective and turbulent flux components van-
ish, sw 5 0 and 5 0. In relation (11), this resultturbQs

indicates that surface salinity is affected only through
the s1] th term. A more thorough treatment of the salinity
surface boundary condition is given by Beron-Vera et
al. (1999).

With large salinity deviations, as may occur in the
presence of realistic freshwater fluxes, a more general
approach than that discussed by Bryan and Cox (1972)
appears necessary to compute ocean density. Bryan and
Cox approximate the full United Nations Educational,
Scientific and Cultural Organization (UNESCO) equa-
tion of state by different cubic polynomials for each
model depth level. This approach is warranted for mod-
els in which salinity is close to 35 psu and for which
the model’s vertical cell thickness is independent of hor-
izontal position. The latter assumption is broken by the
Pacanowski and Gnanadesikan (1998) partial bottom
cells, and the former is broken by realistic freshwater
fluxes. Hence, for the purpose of computing the model’s
hydrostatic pressure, we employ the full UNESCO equa-
tion of state as formulated by Jackett and McDougall
(1995). In this approach, in situ density is computed as

r(t) 5 r[u(t), s(t), p(t 2 Dt)], (13)

where u is the model’s potential temperature and s is
salinity. The pressure p is lagged one time step instead
of performing the iterative approach described by Dewar
et al. (1998). The added cost of computing density via
Jacket and McDougall’s UNESCO formulation has been
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found to be a modest 5%–10% depending on the model
configuration.

3. Discrete momentum budget

In this section, we formulate the discrete momentum
budget, which shares much in common with the tracer
budget just discussed, and then present a solution al-
gorithm for the model’s approximated barotropic and
baroclinic modes.

a. Continuous time momentum budget

Ignoring meridional gradients for brevity, the contin-
uous time budget for the zonal momentum of a Bous-
sinesq fluid occupying a rectangular velocity cell is giv-
en by

]t(ro Ahuu) i 5 (ro Ahu fy) i 2 hudy(pi11 2 pi)

2 rody( 2 )x x˜ ˜F Fi11 i

2 ro A( 2 ).z zF Fk21 k (14)

In this equation, A is the horizontal area of the velocity
cell, hu is its thickness (see Fig. 1 for the relation be-
tween hu and ht), and pi is the hydrostatic pressure acting
on the vertical face of the velocity cell. As with the
zonal tracer flux, the momentum flux F̃ x is weighted by
the generally time-dependent thickness of the cell. Met-
ric terms arising from momentum advection and friction
on a sphere (e.g., Griffies and Hallberg 2000) have been
omitted for brevity, but they are present in the numerical
code.1

Here, Fz represents the vertical advective and tur-
bulent momentum flux passing across the horizontal cell
faces. In particular, represents the momentum fluxzF k50

passing through the ocean surface at zk50 5 hu. It con-
sists of the usual vertical turbulent momentum flux and
a contribution from the vertical advection of momentum
relative to the moving sea surface,

5 2 qwuk50.z z,turbF Fk50 k50 (15)

The surface flux must be prescribed by the bound-zF k50

ary condition that the total vertical momentum flux
through the air–sea interface is continuous at zk50 5 hu.
That is, 5 M, where the momentum flux M, whichzF k50

arises from another component model such as an at-
mospheric boundary layer, takes the form

M 5 2( 1 qwuw),21 xr to winds (16)

which has contributions from wind stress as well as

1 Additionally, the constant Boussinesq density, ro, is not set to 1
g cm23, as previously done in the Bryan–Cox–Semtner model (Bryan
1969; Cox 1984; Semtner 1974) or previous versions of MOM (Pa-
canowski et al. 1991). Instead, ro 5 1.035 g cm23, from which density
in the World Ocean generally deviates by less than 2% (Gill 1982,
p. 47), whereas using r0 5 1.0 g cm23 is less accurate.

momentum flux with freshwater. Although the total mo-
mentum flux is continuous at zk50 5 hu, the two com-
ponents need not be. For example, the freshwater ve-
locity uw may be different from uk50, although most
climate models assume they are equal and take them
equal to the horizontal velocity uk51 in the top model
grid cell. This point is further discussed below.

On the B grid used in MOM, the offset in the hori-
zontal between velocity and tracer/density points means
that the hydrostatic pressure at the western face of a
surface velocity cell is given by

y
atmp 5 gr (|z |/2 1 h ) 1 p , (17)i i 1 i i

where is a meridional grid average and hi is on theya
tracer point. The first piece of this pressure, pb [
( , represents a discretization of the baroclinicyg|z |/2)r1 i

pressure in the surface cell, whose horizontal gradients
arise from baroclinicity in the density field. Note that
z1 has been assumed independent of horizontal position,
hence its removal from the meridional average operator.
The second contribution, ps [ , represents a dis-ygr hi i

cretization of the surface pressure, whose gradients arise
from those in the density-weighted free surface height.
Here, patm represents an atmospheric pressure contri-
bution, which is dropped in the following for brevity,
yet is maintained in the numerical code when coupling
to an atmospheric model.

For Boussinesq models, it is common to approximate
the surface pressure as ps ø , rather than theygr h0 i

hydrostatic form . With this approximation, sur-ygr hi i

face pressure gradients arise solely from gradients in the
free surface height. To maintain self-consistency with
the hydrostatic baroclinic pressure field, while incurring
only trivial computational expense, we maintain the hy-
drostatic form ps 5 in the model.ygr hi i

b. General strategy for the time stepping

Manipulations of the budget (14) lead to the zonal
velocity equation

]tuk 5 fy k 2 ]xps/ro 1 G̃k, (18)

where G̃k represents the forcing
u u˜h G 5 h G 2 d u ] hk k k k k1 k t

u x˜5 2h ] p /r 2 ] Fk x b o x

z z2 (F 2 F 1 d u ] h). (19)k21 k k1 k t

Notably, the cell thicknesses hu used for computing the
terms in Gk are taken at baroclinic time t , as are the
other inviscid contributions such as pressure and ad-
vection.

The freshwater velocity uw in the surface momentum
flux (16) requires additional efforts to specify the com-
plete boundary conditions. However, the momentum
flux with freshwater is in many cases smaller than the
uncertainty in the parameterized wind stress. So, simple
approximations for uw may be exploited to reduce the
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FIG. 2. Schematic of the split-explicit time stepping scheme. Time
increases to the right. The baroclinic time steps are denoted by t 2
Dt , t , t 1 Dt , and t 1 2Dt . The curved line represents a baroclinic
leapfrog time step, and the smaller barotropic time steps NDt 5 2Dt
are denoted by the zigzag line. First, a baroclinic leapfrog time step
updates the baroclinic mode to t 1 Dt . Then, using the vertically
integrated forcing G(t) [Eq. (21)] computed at baroclinic time step
t , a forward–backward time stepping scheme integrates the surface
height and vertically integrated velocity from t to t 1 2Dt using N
barotropic time steps of length Dt, while keeping G(t) and the ocean
depth D(t) fixed. Time averaging the barotropic fields over the N 1
1 time steps (endpoints included) centers the vertically integrated
velocity and free surface height at baroclinic time step t 1 Dt . Note
that for accurate centering, N is set to an even integer.

model complexity. Using the free surface height equa-
tion (1), and the surface flux 5 M, with M givenzF k50

by Eq. (16), leads to

u1]th 1 5 2 2 u1= · Uz 21 xF r tk50 o winds

1 qw(u1 2 uw). (20)

Hence, the approximation uw ø u1 removes the explicit
dependence of baroclinic momentum on the freshwater
flux. Freshwater does influence baroclinic momentum
indirectly, however, through its affects on the conver-
gence 2= · U of the vertically integrated velocity. The
approximation uw ø u1 should be well justified for many
cases, and generalizations for special cases such as
heavy rainfall are straightforward.

For the barotropic mode, MOM time steps the ver-
tically integrated transport U 5 Sk hkuk, as is common
in shallow water models. Its evolution takes the form

] U 5 u ] h 1 h ] u 5 f V 2 D] p /r 1 G, (21)Ot 1 t k t k x s o
k

where Eq. (18) was used for ] tuk, the vertically inte-
grated forcing is given by G 5 Sk hkGk with Gk defined
in Eq. (19), and D 5 Sk hk is the time-dependent ocean
depth. Once the transport and ocean depth are updated,
the updated barotropic velocity can be diagnosed
through u(t 1 Dt) 5 U(t 1 Dt)/D(t 1 Dt).

c. Time stepping algorithm

The focus in this section is on time and depth dis-
cretization, with Fig. 2 summarizing the following al-
gorithm. For purposes of brevity, the horizontal spatial
discretization discussed in the previous subsection will
not be exposed. Discrete baroclinic times and time steps
will be denoted by the Greek t and Dt , respectively,
whereas the barotropic analogs will use the Latin t and
Dt.

1) ALGORITHM BASICS

Allowing the grid cell thicknesses to evolve intro-
duces a fundamentally new element to the traditional
algorithms relevant for constant cells in z-coordinate
models (e.g., Bryan 1969; Semtner 1974; Cox 1984;
Killworth et al. 1991; Dukowicz and Smith 1994). How-
ever, since we impose positive cell thicknesses for all
cells, including the surface, modifications to the con-
stant cell approach should be relatively modest. That is
a goal of the proposed algorithm.

The basic idea is directly analogous to the approach
of Bryan (1969), Semtner (1974), and Cox (1984). That
is, the velocity at an arbitrary depth level k and baro-
clinic time t9 5 t 1 Dt is split into two components:

uk(t9) 5 Bkm(t)um(t9) 1 [dkm 2 Bkm(t)]um(t9)

[ ûk(t , t9) 1 u(t , t9). (22)

This equation is an identity valid for any baroclinic
times t9 and t , with t9 5 t 1 Dt chosen in the fol-
lowing. The utility of the identity relies on the form of
the ‘‘baroclinicity operator’’ used to split the velocity
field

Bkm(t) 5 dkm 2 D(t)21 (t),uhm (23)

where dkm is the Kronecker delta, summation over the
repeated vertical level index m is implied, and

u uD(t) 5 h (t) 5 D 1 h (t) (24)O k o
k

is the ocean depth at baroclinic time t over a column
of velocity points, with Do the resting ocean depth.

This baroclinicity operator projects out the depth-in-
dependent part of a field and keeps its approximate bar-
oclinic portion, where the projection is based on the
distribution of cell thicknesses at time t . Introduction
of two baroclinic time labels t and t9 to Eq. (22) is
necessitated by the freedom afforded the ocean depth
to change in time. That is, t9 represents the baroclinic
time of the full velocity field uk(t9), whereas t repre-
sents the time used to define the baroclinicity operator
Bkm(t) and which defines the split.

If the split introduced in Eq. (22) is successful,
ûk(t , t9) will evolve on a slow timescale, Dt , and
u(t , t9) will evolve on the fast timescale, Dt 5 2N21Dt ,
with N determined by the ratio of external to internal
gravity wave speeds. The method therefore proceeds by
separately updating ûk(t , t9) and u(t , t9) by exploiting
the timescale split. Upon doing so, the right-hand side
of the identity (22) will be specified, hence allowing for
an update of the full velocity field via

uk(t 1 Dt) 5 ûk(t , t 1 Dt) 1 u(t , t 1 Dt). (25)

Upon updating the velocity cell thickness to hu(t 1
Dt), the baroclinic and barotropic velocities ûk(t 1 Dt)
and u(t 1 Dt) can then be diagnosed. The following
subsections detail this approach.
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2) COMPUTING ûk(t , t 1 Dt)

By construction, evolution of the velocity field
ûk(t , t9) is unaffected by vertically independent forces,
such as those from surface pressure gradients. There-
fore, it is sufficient to update the ‘‘primed’’ velocity:

(t 1 Dt) 5 (t 2 Dt) 1 2Dt [ fy k(t) 1 G̃k(t)],Ru9 uk k (26)

which represents a temporal discretization of the full
momentum equation (18), yet without the surface pres-
sure gradient, thus allowing for use of the baroclinic
time step. The lagged velocity (t 2 Dt) 5 uk(t 2Ruk

Dt) 1 (a/2)[uk(t) 2 2uk(t 2 Dt) 1 (t 2 2Dt)] isRuk

a Robert time-filtered version of the full velocity field.
A weak form of such filtering, with a 5 0.01, has been
found sufficient to suppress splitting between the two
leapfrog branches (e.g., Haltiner and Williams 1980). It
is also useful to dampen fast dynamics that may partially
leak through the baroclinicity operator due to the gen-
erally imperfect separation between the slow and fast
dynamics.

The baroclinic piece of the primed velocity (t 1u9k
Dt) yields

ûk(t , t 1 Dt) 5 Bkm(t) (t 1 Dt),u9m (27)

as can be shown by adding the missing surface pressure
gradient to Eq. (26), where it is annihilated by appli-
cation of Bkm(t). At this point, we have specified one-
half of the updated full velocity given by Eq. (25).

3) COMPUTING u(t , t 1 Dt)

The computation of u(t , t 1 Dt) constitutes a most
crucial part of any free surface algorithm, since details
largely determine the stability and conservative aspects
of the scheme. The following approach, which uses a
time averaging over barotropic time steps integrated
from t to t 1 2Dt , is commonly used in explicit free
surface methods. However, its details differ somewhat
from other approaches, and so prompts a reasonably
thorough presentation.

The barotropic ‘‘subcycling’’ uses a forward–back-
ward time stepping scheme, also used by KSWP (see
also, e.g., Haltiner and Williams 1980). In this approach,
surface height is first time stepped using the small bar-
otropic time step Dt:

h*(t , t ) 5 h*(t , t )n11 n

2 Dt[= · U*(t , t ) 2 q (t)]. (28)n w

The asterisk is used to denote intermediate values of the
barotropic fields, each of which are updated on the bar-
otropic time steps. The time label t on h* and U* de-
notes the baroclinic time at which the vertically inte-
grated forcing G(t), the tracer fields, and the total depth
of the ocean D(t) are held for the duration of the bar-
otropic time stepping from t to t 1 2Dt . This is also
the time that sets the barotropic time steps via

tn 5 t 1 nDt, (29)

with n ∈ [0, N]. For stability purposes, we found it
important to take the initial condition h*(t , tn50) as the
time average h*(t) computed from the previous baro-
tropic integration taking place over t 2 Dt to t 1 Dt
[time averaging is defined by Eq. (32) discussed below].
Note that it is assumed that the freshwater flux qw is
constant over the small barotropic time steps, since the
hydrological fluxes are typically updated on each bar-
oclinic time step.

Having the surface height h* updated to the new
barotropic time step allows for an update of the transport

V*(t , t ) 1 V*(t , t )n n11U*(t , t ) 5 U*(t , t ) 1 fDtn11 n [ ]2

1 Dt[G(t) 2 D(t)] p̃*(t , t )],x s n11 (30)

where (t , tn11) 5 gh*(t , tn11)r(t)/ro is the surfacep̃*s
pressure normalized by the Boussinesq density. The
Coriolis force is computed using a Crank–Nicholson
semi-implicit time stepping scheme, which was also
used by KSWP (see also Haltiner and Williams 1980).

After N barotropic time steps, the vertical transport
and surface height are time averaged to produce

N1*U (t 1 Dt) 5 U*(t , t ) (31)O nN 1 1 n50

N1
*h (t 1 Dt) 5 h*(t , t ). (32)O nN 1 1 n50

The time-averaged fields are centered on the baroclinic
time step t 1 Dt , so long as N is an even integer. The
time-averaged surface height h*(t 1 Dt) is used to
initialize the next suite of barotropic integrations from
t 1 Dt to t 1 3Dt , and U*(t 1 Dt) is used to update
u(t , t 1 Dt) via

u(t , t 1 Dt) 5 U*(t 1 Dt)/D(t). (33)

Having u(t , t 1 Dt) then allows for the full velocity
field uk(t 1 Dt) to be updated according to Eq. (25).

4) COMPUTING h(t 1 Dt) AND u(t 1 Dt)

Although the updated full velocity field uk(t 1 Dt)
is now known, the updated surface height h(t 1 Dt)
and barotropic velocity u(t 1 Dt) 5 U(t 1 Dt)/D(t
1 Dt) remain to be determined. A number of options
were tried, with the following two approaches initially
attempted. (a) Stop the barotropic subcycling at t 1 Dt
and use the unaveraged barotropic fields:

h(t 1 Dt) 5 h*(t , t 1 Dt) and (34)

U(t 1 Dt) 5 U*(t , t 1 Dt). (35)

This choice was originally used by KSWP, yet we, and
others such as the OCCAM group (see Webb et al.
1998), have found it to result in a very unstable algo-
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rithm and so it is not suitable. (b) Use of the time-
averaged barotropic fields given by Eqs. (31) and (32),

*h(t 1 Dt) 5 h (t 1 Dt) and (36)

*U(t 1 Dt) 5 U (t 1 Dt), (37)

allows for a substantial improvement in stability, and it
is for this reason that OCCAM chooses this approach.
However, this choice is not self-consistent in the sense
that U(t 1 Dt) so defined will not generally be equiv-
alent to Sk (t 1 Dt)uk(t 1 Dt) due to time-dependentuhk

thicknesses. Additionally, use of the time average for
the surface height precludes compatibility between the
tracer and volume budgets as discussed in section 2c,
and it also does not allow for a specification of a dis-
cretely conserved total tracer as described in section 2d.
Therefore, we propose the following alternative ap-
proach that satisfies our goals.

We first update the thicknesses, and then diagnose the
integrated transport. To do so, compatibility as discussed
in section 2c indicates that since the tracer concentration
is time stepped with a leapfrog scheme, so too must the
surface height budget:

*h(t 1 Dt) 5 h (t 2 Dt)

2 2Dt [= · U(t) 2 q (t)]. (38)w

As the surface height generally evolves on a fast time-
scale, use of this proposed baroclinic leapfrog time step
is generally unstable. To maintain stability, as well as
general smoothness of the free surface field, it has been
found necessary to use the time-averaged surface height
h*(t 2 Dt) rather than a more traditional Robert filtered
height. Doing so does not effect the compatibility con-
dition, and so has been found suitable. Using this ‘‘big
leapfrog’’ step to define h(t 1 Dt) then allows for an
update of the surface tracer and velocity cell thicknesses

(t 1 Dt) and (t 1 Dt).t uh hk k

Given the updated cell thicknesses, the updated trans-
port U(t 1 Dt) can be diagnosed

uU(t 1 Dt) 5 h (t 1 Dt)u (t 1 Dt), (39)O k k
k

thus ensuring self-consistency between the updated full
velocity uk(t 1 Dt) and the updated vertically inte-
grated velocity. Finally, to complete the time stepping,
the updated barotropic velocity is diagnosed through

u(t 1 Dt) 5 U(t 1 Dt)/D(t 1 Dt), (40)

where D(t 1 Dt) 5 S (t 1 Dt) is the new depth ofuhk

a velocity cell column. The updated baroclinic velocity
follows from its definition ûk(t 1 Dt) 5 uk(t 1 Dt)
2 u(t 1 Dt). Note that a similar reconciliation or re-
adjustment of the velocities is discussed by Hallberg
(1995, p. 221) for use in his isopycnal model.

d. Comments on the algorithm

1) GENERALITY

Although the immediate application of the algorithm
is for the free surface method, the algorithm allows any
thickness within a vertical column to vary in time, so
long as it remains positive. In particular, it is thought
that this approach will find use for models with a time-
varying bottom boundary layer thickness, such as that
proposed by Killworth and Edwards (1999).

2) STABILITY

As expected, the baroclinic and barotropic time steps
are determined by the usual Courant–Freidrichs–Lewy
constraints set by waves and advection. Notably, time
averaging has not been found to adversely affect the
propagation of barotropic waves relative to the results
using the KSWP approach. We comment further on this
point when presenting a version of the Marsigli problem
in section 4c.

Time averaging over the barotropic steps has been
found to stabilize the model so that stretching of tracer
time steps to values larger than the baroclinic time step
is readily available. The stretching of tracer time steps
is ubiquitous when spinning up to a thermodynamic
equilibrium coarse-resolution, rigid-lid, z-coordinate
ocean models (e.g., Bryan 1984; Killworth et al. 1984;
Danagasoglu et al. 1996). Therefore, we consider the
added stability of the present scheme to be of great
practical value.

3) COMPUTATIONAL TIMING

Because of the ability to match the baroclinic and
tracer time steps to those commonly used in rigid-lid
models, the present scheme has been found to be com-
putationally comparable to the rigid lid on a single com-
puter processor. Furthermore, due to the absence of the
topographic instability present in rigid-lid models,
which was described by Killworth (1987) and Dukowicz
et al. (1993), the free surface is more economical with
nontrivial topography. Section 4a provides an example
to support these comments, and section 5 presents a
discussion of computational aspects relevant for parallel
machines.

Relatedly, when using partial bottom cells of Paca-
nowski and Gnanadesikan (1998), as commonly used
now in MOM for representing the bottom topography,
use of the time-dependent top model cells engenders
only a trivial added cost relative to the case of constant
top model cell volumes. This experience is in contrast
to the 10% added cost of allowing the surface cell to
vary in the implicit method of Roullet and Madec
(2000).
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4) GRID SPLITTING

As pointed out in KSWP, the surface height on a B
grid is prone to grid splitting, which manifests as a
checkerboard pattern. The present scheme is less prone
to this splitting than other algorithms we tried, and nu-
merous tests indicate that the splitting is easily sup-
pressed with mild filtering as described by KSWP or
other filters described in Pacanowski and Griffies
(2000). Notably, as the nonlinear free surface described
here incorporates the surface height undulations into the
tracer and momentum equations, suppression of the grid
splitting is more important than in the linearized free
surface methods.

5) VOLUME CONSERVATION

To conserve the model volume, it is sufficient to en-
sure that the surface height h evolves in a conservative
manner. Both explicit time stepping discretizations (28)
and (38) trivially satisfy such conservation. Therefore,
all model tests indicate that volume is conserved to
within computer roundoff.

6) ENERGETIC CONSISTENCY

Energetic consistency of the methods used here have
been shown elsewhere. First, the arguments given by
Bryan (1969) account for the momentum advection
terms, which are discretized using second-order cen-
tered differences. The result is a redistribution of local
kinetic energy, yet a preservation of its global integral.
Second, the arguments in the appendix of Pacanowski
and Gnanadesikan (1998) show that the partial cell
methods ensure that the change in energy due to hori-
zontal pressure forces balances potential energy change
when density is linearly dependent on temperature and
salinity. Importantly, this consistency is realized only
when incorporating the undulating surface grid cell
thickness into both the tracer and baroclinic velocity
equations, as done here. Third, appendix B of Dukowicz
and Smith (1994) provides a complementary analysis
of the energetic consistency within their implicit free
surface method, much of which is relevant for the pre-
sent considerations.

7) VERTICAL VELOCITIES

Vertical velocities are diagnosed at baroclinic time
steps using volume conservation within a grid cell. In
particular, volume conservation over a surface cell in-
dicates that the vertical velocity at the bottom face of
this cell arises from the horizontal convergence of vol-
ume in this cell, time tendencies in the thickness of this
cell, and volume passing across the top face from fresh-
water fluxes.

It is useful to see precisely how these velocities are
determined. For this purpose, consider a vertical integral

of the continuity equation = · u 1 ]zw 5 0 over a rect-
angular top model grid cell:

h

w 5 w(h) 1 dz= · u. (41)k51 E
z1

Use of the surface kinematic boundary condition

[] t 1 u(h) · =]h 5 w(h) 1 qw, (42)

and Leibnitz’s rule with =z1 5 0, renders
h

w 5 ] h 2 q 1 = · dzuk51 t w E
z1

h

5 2= · U 1 = · dzu, (43)E
z1

where the last step used the vertically integrated conti-
nuity equation (1). This exact expression for wk51 is ap-
proximated in the model with a discretized version of

wk51 ø 2= · U 1 = · (hu), (44)

where h 5 h 1 |z1 | is the surface cell thickness and the
horizontal velocity u is that in the surface cell k 5 1.
Notably, unlike most z-coordinate free surface models,
there has been no linearization of the surface kinematic
boundary condition made by dropping the surface height
advection u(h) · =h.

Given an expression for the convergence 2= · U, di-
agnosing wk51 in this manner allows for the remaining
interior vertical velocities to be successively found
through further integration of the continuity equation
downward through a vertical column. On a B grid,
2= · U is centered on a tracer point. Hence, Eq. (44)
yields the vertical velocity on the bottom face of the
surface tracer cell. The vertical velocity on the sur-
rounding velocity cells is constructed as a volume con-
serving average of the surrounding tracer cell vertical
velocities.

In MOM, the bottom of the ocean on tracer cells is
a flat surface, representing the ‘‘lopped off’’ surfaces
of topography.2 Hence, the vertical velocity must vanish
at this location. A self-consistency check on how ac-
curately the model’s numerics conserve volume amounts
to testing how well this property is satisfied when in-
tegrating downward from the ocean surface, starting
from the vertical velocity given by Eq. (44). Adding
freshwater to the model provides a nontrivial test of
these properties. The present scheme produces zero ver-
tical velocities at the ocean bottom on tracer cells, to
within computer roundoff, regardless of the topography
or surface forcing.

2 The bottom velocity cell generally does not sit on the ocean
bottom, and so can support a vertical velocity due to sloping topog-
raphy. Details of how MOM handles this velocity are given in Webb
(1995) as well as in Pacanowski and Griffies (2000).
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8) ORDER OF THE SOLUTION METHOD

The method presented above solves for the updated
‘‘quasi-baroclinic’’ velocity ûk(t , t 1 Dt) prior to the
updated quasi-barotropic velocity u(t , t 1 Dt). The
prefix quasi is used since these velocities are defined
with respect to the ocean depth at time t instead of t
1 Dt . This approach is motivated largely because it
allows for minimal fundamental changes to the MOM
3 structure, in which the baroclinic and tracer equations
are solved prior to the barotropic equations. However,
a more straightforward approach is to solve for the up-
dated surface height h(t 1 Dt) and barotropic velocity
u(t 1 Dt), and then to update the baroclinic and tracer
equations. This latter approach is being pursued in
MOM 4.

4. Numerical examples

For the purpose of numerically illustrating the al-
gorithm, we present selected results from four experi-
ments. The first and second are from an idealized, flat-
bottom, coarse-resolution, sector model driven by time-
independent buoyancy and momentum forcing. Details
of the configuration are provided in the caption to Fig.
3. The third example is that of a higher-resolution re-
gional model with two basins connected by a channel
with a shallow sill. This configuration is shown in detail
later (Fig. 5). The final example is a coarse-resolution
global model that quantifies the issues of local versus
global conservation.

a. Free surface compared to rigid lid

We start by providing a direct comparison between
the explicit free surface and the rigid-lid streamfunction
method in the sector model. Each experiment used the
same tracer time step of 1 day and the same baroclinic
time step of 1 h. The rigid-lid experiment used a 1 h
time step for the streamfunction, whereas the free sur-
face used 300 s for the barotropic time step. With the
time averaging used with the free surface method, there
are a total of 24 barotropic time steps integrated for
each baroclinic time step. Both the free surface and
rigid-lid methods used a virtual salt flux and zero fresh-
water forcing.

The experiments were run for 4000 tracer years, at
which point both reached a quasi-equilibrium. When run
on a single processor on GFDL’s Cray T90, the free
surface method took a few percent longer than the rigid-
lid method. Although this comparison is a function of
model configuration and computer details, as well as
elliptic solver algorithm, the key point is that such a
comparison is impressive for the free surface model,
since the rigid-lid model is ideally suited for such a
simple configuration. That is, the flat-bottom, time-in-
dependent forcing, and absence of mesoscale eddies
means that the number of elliptic solver scans can be

quite low, often requiring only a single scan to update
the streamfunction.

More realistic bottom topography, surface forcing,
and mesoscale eddies will greatly increase the number
of elliptic solver scans required by the rigid-lid model.
In practice, more realistic situations often prompt one
to greatly reduce or loosen the criteria used for deter-
mining a solution to the elliptic problem. Indeed, in
some cases it is difficult to argue that a ‘‘solution’’ has
even been found. In contrast, the ratio of barotropic to
baroclinic wave speeds is independent of model reso-
lution and surface forcing. Rather, it is determined by
the bottom topography and stratification. Consequently,
for the explicit free surface method, there is no issue
regarding convergence to a solution, as convergence is
guaranteed by construction.

As with KSWP and Dukowicz and Smith (1994), we
check numerical integrity of the free surface solution
by comparing with the more highly tested rigid-lid re-
sults. For example, Fig. 3 provides a sample of the free
surface solution; the rigid-lid results are nearly identical.
Since the vertical velocity at the ocean surface vanishes
at equilibrium in a constant forced, coarse-resolution
free surface model without freshwater forcing, the two
methods should indeed provide nearly identical answers.
A detailed comparison (not shown) reveals negligible
differences for all aspects of the simulations. Other mod-
el configurations also have been run, with similar com-
parisons.

We conclude from these tests that the explicit free
surface method maintains the convenience of the rigid
lid for purposes of idealized coarse-resolution modeling.
The solutions are likewise nearly the same when run
under the same forcing. Both of these conclusions have
remained valid with more realistic climate model ex-
periments now routinely run at GFDL.

b. Goldsbrough–Stommel circulation

As discussed by Huang (1993), the Goldsbrough–
Stommel circulation arises from freshwater forcing, and
this circulation is absent in traditional rigid-lid models
that use the virtual salt flux. Figure 4 illustrates this
circulation when run with the free surface for 4000 yr.
The freshwater forcing, as used by Huang, is given by

0q f 2 fw Sq 5 1 2 2 , (45)w 1 2cosf f 2 fN S

where 5 1 m yr21 and f N and f S are the northern0qw

and southern latitudinal boundaries, respectively. The
domain integral of this water flux vanishes. There is no
wind forcing nor temperature forcing, and temperature
is uniform. The barotropic circulation is quite weak and
is comparable to that obtained by Huang. The baroclinic
circulation, as documented through the overturning
streamfunction, is strong and saline direct, yet somewhat
weaker than that of Huang, perhaps because of our use



1092 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

FIG. 3. The sector model configuration employed here consists of a flat-bottom 608 3 608 sector from 58 to 658N.
The grid is locally square, so that Df 5 Dl cosf, where Dl 5 2.58 is the longitudinal resolution. There are 18
unevenly spaced grid points in the vertical. The vertical tracer diffusivity is 0.5 cm2 s21, the vertical momentum viscosity
is 10 cm2 s21, the horizontal tracer diffusivity is 107 cm2 s21, and horizontal momentum viscosity is 2 3 109 cm2 s21.
The Quick scheme of Leonard (1979), as detailed in Holland et al. (1998), is used for tracer advection. Temperature
in the surface level of 35-m resting thickness is restored to the linear temperature profile given by Cox and Bryan
(1984). A 35-day timescale is used, which delivers roughly a 47 W m22 (8C)21 flux sensitivity. Salinity is uniform.
Winds are zonal as given by Bryan (1987). The rigid-lid model used a conjugate gradient solver. Shown here are results
from the free surface model after 4000 tracer years; the rigid-lid results are virtually identical. (upper left). Zonally
averaged temperature. (lower left) Overturning streamfunction (Sv 5 106 m3 s21). (upper right) Barotropic stream-
function (Sv). (lower right) Free surface height (cm). Note that the surface height diagnosed from the rigid-lid solution
is quite close to that shown here from the free surface method.

of half the vertical diffusivity. It remains unclear how
important this circulation is for realistic climate simu-
lations, since it is often easily masked in the presence
of wind and heat forcing. Regardless, its presence is a
natural consequence of the use of freshwater forcing
with the free surface method.

When integrating the model to reach the solution in
Fig. 4, we used 1-day tracer and 1-h baroclinic velocity
time steps as in the previous experiment. Although nei-
ther salt nor water were added to the model, the total
salt does not remain precisely constant during the in-
tegration. The reason, as discussed in section 2, is that



MAY 2001 1093G R I F F I E S E T A L .

FIG. 4. Illustrating the Goldsbrough–Stommel circulation. (top) The
barotropic streamfunction (Sv). (bottom) Overturning streamfunction,
with each contour representing 10 Sv. These results should be com-
pared to Figs. 6a and 7a in Huang (1993).

FIG. 5. The model configuration consists of a domain from roughly
518 to 66.58N, 358 in long, and 100-m depth. The resolution is 0.38
long, 0.158 lat, with uniform 4-m-thick boxes. A sill is placed in the
middle of the domain, running from south to north and reaching to
within 20 m of the surface. Partial bottom cells of Pacanowski and
Gnanadesikan (1998) are used to represent the sill. Tracer and bar-
oclinic momentum time steps are 240 s, and the barotropic time step
is 60 s. The vertical tracer diffusivity is 1.0 cm2 s21, the vertical
momentum viscosity is 10 cm2 s21, the horizontal tracer diffusivity
is 107 cm2 s21, and the horizontal momentum viscosity is 5 3 108

cm2 s21. The model is initialized from rest with zero sea level ele-
vation and with a uniform linear temperature profile from 108C at
the surface and 58C at the bottom. Salinity varies vertically from 33
to 35 psu west of the sill, and from 10 to 12 psu east of the sill.
Shown here is the surface height and barotropic velocity fields (only
every third velocity point is shown) after 1 day of adjustment from
the initial conditions. Note the strong dipole sitting on top of the sill,
and the predominantly northward barotropic currents next to the outer
walls as remnants of barotropic Kelvin waves. A vector representing
a current speed of 15 cm s21 is indicated at the bottom of the figure.

the tracer and baroclinic momentum time steps were
unequal. The consequences on the equilibrium solution
reached at 4000 yr have not been assessed. Doing so
requires rerunning the experiment with equal tracer and
baroclinic time steps.

c. Marsigli problem

The purpose of this section is to directly compare the
new free surface method to that of KSWP. For this pur-
pose, we consider an unforced baroclinic adjustment
problem motivated from the system first discussed for
the Bosporus by Marsigli in 1681 (see Gill 1982, p. 96).

The experimental details are given in the caption to
Fig. 5. A strong baroclinic pressure gradient arising
from a salinity front rapidly piles a sea level difference
of about 40 cm between the two basins. After about two
model days, barotropic and average baroclinic pressure
gradients balance each other, and the sea level difference
becomes roughly time independent. A weak cross-chan-
nel geostrophic circulation persists that prevents a sa-
linity exchange between both basins. Although the setup
appears artificial, a similar balance can be observed in
the Baltic Sea during periods of weak wind forcing.
Because the sea level changes rapidly and there is a
strong interbasin salinity gradient, this adjustment prob-
lem provides a severe test for how well the model con-
serves total salt.
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FIG. 6. Time series of the deviation of domain-averaged salinity
from its initial condition, where each model time step is plotted (note
the logarithmic vertical axis). All model versions start with the same
initial conditions. The time series l1 results from running a linearized
free surface, with a constant cell thickness in the tracer and baroclinic
velocity equations. The tracer and baroclinic time steps are both 240
s. The time series l2 employs exactly the same linearized free surface
scheme but the salt between the upper model boundary at z 5 0 and
the sea level z 5 h is included in the domain tracer integral. The
time series n1, which shows negligible deviation from zero, uses the
nonlinear free surface discussed in this paper with tracer and baro-
clinic time steps both equal to 240 s. The time series n2 uses the
same nonlinear free surface, yet with a tracer time step of 720 s, and
baroclinic time step of 240 s. All cases used 60 s for the barotropic
time step.

Figure 5 shows the sea level and barotropic current
after 1 day using the nonlinear free surface method. The
current between the basins is deflected to the right by
the Coriolis force. There is a strong dipole sitting on
top of the sill, with a high to the southwest and a low
to the northeast. The barotropic flow at the outer edges
of the subbasins is directed northward in both basins,
which indicates that this current is the result of baro-
tropic Kelvin waves encircling the subbasins. Such
waves, and the remaining currents, cannot be repre-
sented in a rigid-lid model.

In general, the solution for the sea level, velocity,
temperature, and salinity differ only slightly between
the KSWP and the new approach during the adjustment.
The close agreement of these features provides an im-
portant positive assessment of the new method. In par-
ticular, it indicates that the time averaging approach used
here does not overly damp the barotropic waves, at least
as compared to the KSWP algorithm.

As there are no surface water fluxes, the total volume
of the ocean domain should remain constant, as indeed
it does to within computer roundoff (not shown). Like-
wise, total salt and domain-averaged salinity (total salt
divided by total volume) should remain constant, where
total salt is computed via Eq. (10). An accounting of
the domain-averaged salinity is shown in Fig. 6. Shown

are four time series over a 3-month period that track
how salinity deviates from its initial value.

The time series l1 results from running the free surface
of KSWP, with a constant cell thickness in the tracer
and baroclinic velocity equations. The tracer and bar-
oclinic time steps are both 240 s and the barotropic time
step is 60 s. During the first two model days the sea
level in the western basin is decreasing rapidly but the
sea level in the eastern basin is increasing. Since the
upper model boundary with the KSWP scheme is at z
5 0, saline water is entering the model area in the west-
ern basin but brackish water leaves the model area
through the level z 5 0 in the eastern basin. Conse-
quently, the domain-averaged salinity in the model area
is increasing. As long as the sea surface salinity is uni-
form, the salt gain in the western basin and the salt loss
in the eastern basin would be canceled exactly by a sea
level variation in the opposite direction. However, such
cancellation is not general, and so nonconservation of
total salt is the norm.

Since the sea surface height is known, the salt be-
tween the upper model boundary at z 5 0 and the sea
level z 5 h can be included in the diagnostic for domain
tracer content. As an example, the time series l2 employs
exactly the same linearized free surface scheme as l1

but uses this improved tracer diagnostic. Compared with
l1, the conservation of salt is better ; however, there is
a clear trend in the domain-averaged salinity. This gain
of salt stems from undulations of the sea level in cor-
respondence with a varying sea surface salinity.

The time series n1, which shows minor deviation from
zero, uses the new free surface discussed in this paper
with tracer and baroclinic time steps both equal to 240
s, with a 60-s barotropic time step. The conservation of
tracer is improved substantially when compared with
the linearized free surface results. The deviation from
zero is less than 1025 psu.

The time series n2 uses the same free surface, yet
with unequal baroclinic and tracer time steps, with a
tracer time step of 720 s, and baroclinic time step of
240 s. As discussed in section 2, tracer conservation is
not ensured in this case, as is indeed shown by the
roughly 0.04 psu salinity drift.

d. Quantifying local versus global conservation

The Marsigli example provided an illustration of the
global conservation properties of the new algorithm
when using a discretization that maintains local com-
patibility between the volume and tracer budgets. As
mentioned in section 2e, there is an alternative approach
that is available for maintaining more exact global con-
servation properties, yet at the cost of sacrificing the
local compatibility. We present here an example that
compares the two approaches and concludes that the
scheme that performs superior for global conservation
is preferable for climate modeling purposes.

We consider a coarse-resolution global model run



MAY 2001 1095G R I F F I E S E T A L .

with two idealized conditions and using two different
forms for the discretization of the T]th term appearing
in the tracer concentration budget (6). Discretization (a)
uses T(t)[h(t 1 Dt) 2 h*(t 2 Dt)], as used in the
Marsigli example just presented. This form provides for
local self-consistency between the tracer and volume
budgets as discussed when deriving Eq. (38). However,
as discussed in section 2d, it will not provide for exact
global conservation. Discretization (b) drops the time
average on the lagged surface height and instead uses
T(t)[h(t 1 Dt) 2 h(t 2 Dt)]. This expression leads
to exact global conservation in the case where there is
no Robert filtering on the tracer, yet it is not locally
self-consistent with a volume budget that uses a time-
filtered surface height h*(t 2 Dt) for stability.

The global model has roughly three degrees of hor-
izontal resolution, uses 15 vertical levels down to
5000-m depth, and is run with a 30-min time step for
the tracer and baroclinic momentum and 30-s barotropic
time step. The first experiment initialized the ocean at
rest with constant 258C water and then added a cli-
matological wind stress yet no heat fluxes. As presented
in section 2c, the solution should maintain constant 258C
water everywhere. For an indefinite integration period,
discretization a indeed remains precisely at 258C. In
contrast, discretization b shows water after 30 days with
a temperature of 24.999 958C. Although not exact, this
is quite a small deviation even when extrapolated to
integrations of centuries to millennia.

The second experiment initialized the temperature
field with a zonally averaged version of the Levitus
(1982) analysis. The surface flux consisted of the same
climatological wind stress as the previous example as
well as a uniform and constant 10 W m22 surface heat
flux. We assess here whether the heat input through the
ocean surface is equivalent to the heat absorbed by the
ocean as deduced by measuring the ocean’s total heat
content via Eq. (10). We focus on a single model day
since this is a typical time period over which winds and
surface tracer flux are held fixed in coupled climate
models.

After 1 day for discretization a, the heat input through
the ocean surface minus the change in ocean heat con-
tent was equivalent to a spatially averaged error over
the globe of 20.5 W m22. Note that over the first half
of the day, the error was 21.6 W m22, which diminished
to 20.37 W m22 after 2 days. These are nontrivial errors,
upward of 10%–20% of the imposed heating from the
atmosphere. In contrast, discretization b, along with
Robert filtering on the tracer, reduced the error from
20.5 W m22 to a negligible 20.003 W m22. Removing
the Robert filter brings the error to 1029 W m22, which
arises from computer roundoff.

Both solution methods showed negligible qualitative
differences for the structure of the surface height over
the 30-day integration period. However, given the small
errors incurred by discretization b for both the first and
second set of experiments, we conclude that it is a pref-

erable approach for longer integrations where conser-
vation is key.

5. Computational aspects

The purpose of this section is to provide an overview
of computational issues related to the use of a particular
barotropic algorithm in a parallel computational envi-
ronment. The papers by Dukowicz et al. (1993), Webb
(1996), Webb et al. (1997), Marshall et al. (1997), and
Guyon et al. (2000) are complementary to the following.

a. Fundamental considerations

The dominant feature of current supercomputing tech-
nology is the large and rapidly growing disparity be-
tween processor clock speeds and the memory band-
width and latency. The rate at which processors are able
to execute their instructions upon data far outstrips the
ability of memory to deliver data to the processor. All
current research into supercomputing architecture (see,
e.g., Culler and Singh 1998) is directed at resolving this
problem.

Traditional supercomputers, such as the Cray vector
machines, are largely dependent on prohibitively ex-
pensive custom memory to deliver data at a rate suf-
ficient to keep vector pipelines busy. The microproces-
sor-based computers currently being produced rely in-
stead on commodity memory, but implement a deep
memory hierarchy, where multiple levels of smaller and
faster data caches are placed between the main memory
and the processor. For performance comparable to vec-
tor systems, scalable cache-based microprocessor su-
percomputers achieve speedup through massive parallel
partitioning of the problem, where the problem is dis-
tributed among many processors working concurrently
and exchanging data on a network. This architectural
model leads to measures of algorithm performance sub-
stantially different from the vector model. Notably, the
following issues become central.

1) Temporal locality. Given the relatively high cost of
memory access, algorithms that have a high rate of
data reuse are preferable. The computational inten-
sity, defined as the ratio of floating-point operations
per memory request, is required to be as high as
possible. The match between the size of the data
subset allotted to a processor, and the size of its
cache, is a key element in this aspect of performance.

2) Spatial locality. In the interests of minimizing com-
munication among processors, algorithms that main-
tain spatial locality of data references are most use-
ful.

3) Communication profile. The communication perfor-
mance of the interprocessor hardware interconnect
is measured in terms of its latency (startup time per
message) and bandwidth (the inverse of the trans-
mission rate). Communication latency can be a cause
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TABLE 1. MOM 3 performance on a Cray T3E-900 for a coarse-
resolution model. The model has one-dimensional domain decom-
position along latitude rows, runs with the MOM 3 memory window,
and uses Cray-SHMEM communication. Results here are from a
Southern Hemisphere configuration using a 48Mercator grid extend-
ing from the equator to 748S with 90 3 28 3 40 grid points. The
model used a tracer time step of 43 200 s, baroclinic time step of
4320 s, and explicit free surface time step of 216 s. Model run times
are given in s. Shown are the number of T3E computer processors
(N ), number of computed latitude rows per processor (j/N), time for
the main model loop (main), time for the free surface portion of the
model (fs), total model run time (total), scaling (scale), and the me-
gaflops per second (Mflop/s). Scaling is defined to be the total run
time taken for an experiment to complete on one processor, divided
by the time taken for N processors as scaled by the number of pro-
cessors: i.e., scale 5 T1/(NTN).

N j/N Main fs Total Scale (%) Mflop/s

1
2
4
7

14

28
14

7
4
2

27.10
15.18
10.94

7.48
1.45

1.10
0.40
0.27
0.21
0.19

28.22
15.58
11.22

7.70
1.65

100
90
63
53

122

32.86
59.51
82.65

120.43
562.00

TABLE 2. Same as Table 1 but for a more refined grid of 18 Mercator
resolution with 360 3 112 3 40 grid points, tracer time step of 4320
s, baroclinic time step of 4320 s, and explicit free surface time step
of 60 s.

N j/N Main fs Total Scale (%) Mflop/s

1
2
4
7
8

14
16
28

112
56
28
16
14

8
7
4

1793.41
1088.09

545.62
316.80
277.57
162.72
143.55

86.04

142.29
144.38

78.79
50.85
45.07
31.53
27.96
22.99

1935.72
1232.48

624.43
367.42
322.66
194.27
172.34
109.05

100
98
97
94
94
89
88
79

39.77
77.96

153.87
261.51
297.78
494.53
557.52
881.10

for concern on most commercially available ma-
chines today, barring a few exceptions such as the
Cray T3E. The amount of data that needs to be trans-
ferred between processors is a function of the spatial
locality of the algorithm and the problem size. Al-
gorithms that can accomplish the maximum data
transfer in the fewest possible messages are prefer-
able.

b. Algorithms available in MOM 3

As mentioned in the introduction, there are three basic
algorithms in MOM 3 for solving the barotropic mode:
the rigid-lid streamfunction of Bryan (1969), with mod-
ifications to the rigid-lid surface pressure method of
Smith et al. (1992) and Dukowicz et al. (1993); the
implicit free surface method of Dukowicz and Smith
(1994); and the explicit free surface method of KSWP
as well as that discussed here.

The rigid-lid model, although parallelized (Redler et
al. 1998), has not been the focus of recent algorithm
research at GFDL, largely because of the physical issues
previously raised in this paper as well as problems with
global data dependencies related to island integrals [see
Bryan (1969) as well as Smith et al. 1992 for discus-
sion].

The implicit free surface method, in contrast, has a
relatively long history of use on parallel machines. This
algorithm solves the barotropic system implicitly in
time, hence allowing for the barotropic mode time step
to be lengthened to that of the baroclinic mode. As such,
there is no subcycling of the barotropic mode as required
with the explicit approach. In so doing, however, the
algorithm requires the solution of an elliptic problem.

The elliptic solvers used in the implicit free surface
method are variants of the basic iterative Jacobi solver,
where methods are used to accelerate the rate of con-

vergence. For example, the conjugate gradient (CG)
solver computes the optimal vector along which to con-
verge. Computation of this vector involves a global sum
across the entire domain; hence, the data dependencies
are global, and involve global communication at each
step in the solver iteration. It is observed in MOM that
the number of iterations for the CG method is ;100 for
a 18 model with static boundary conditions, and goes
up with increasing resolution. Additionally, the iteration
count is highly dependent on the model’s representation
of bottom topography and surface forcing, with more
realistic topography and time-dependent surface forcing
generally requiring much larger iteration counts. Parallel
implementation of the CG requires communication at
each iteration. Other, faster methods, with better parallel
performance, such as multigrid methods, are known to
exist, but also require increased steps as the resolution
goes up.

The explicit free surface has improved data locality,
since the computations involve only local derivatives
and no elliptic problem. The ratio of the baroclinic to
the barotropic time step is given by the ratio of the phase
speeds of the barotropic gravity wave to the first bar-
oclinic wave. This ratio is determined by ocean depth
and stratification and, so, is independent of grid reso-
lution. Hence, the method’s computational performance
is generally independent of grid resolution.

c. Examples of performance on scalable systems

MOM 3 is parallelized in one dimension, along lat-
itude rows only. Scalability is thus measured in terms
of latitude rows per processor. We show scaling results
from a Cray T3E at two different resolutions using the
explicit free surface algorithm documented here. Table
1 shows scaling results for a Southern Hemisphere con-
figuration using a 48 Mercator grid. The superlinear scal-
ing above seven rows per processing element (PE) is a
result of arrays becoming small enough to fit in cache.
Table 2 shows results for the same domain at 18 reso-
lution.

The results for the 18 model are more appropriate for
current and future needs of parallel ocean modeling.
They indicate that one can increase the number of pro-
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cessors in MOM 3 until 8 rows/PE without significant
loss of scalability. Note that with 4 rows/PE, scalability
is 80%, whereas it has been found to be about 60% for
MOM’s version of the implicit free surface method. Fur-
thermore, as noted previously, absolute times for the
implicit free surface method are highly dependent on
the conjugate gradient iteration count needed to achieve
convergence to the subjectively chosen tolerance level.

6. Conclusions

Some key conclusions of this paper were noted in the
introduction, with the central ones highlighted here.

By adapting the partial cell framework of Pacanowski
and Gnanadesikan (1998) to the undulating top model
grid cell, the explicit free surface scheme described here
fully incorporates the effects of the surface height into
the tracer and baroclinic momentum equations. Doing
so allows for the surface boundary conditions to be
formulated in a physically consistent and meaningful
manner, to treat tracer and freshwater fluxes consistently
and quasi-conservatively, and to maintain energetic con-
sistency in which buoyancy effects in the density equa-
tion balance the work done by pressure from the mo-
mentum equation.

The explicit free surface method is stable and allows
long tracer time steps. This result represents a key prac-
tical feature of the algorithm for use in coarse-resolution
climate studies. Relatedly, when run on parallel com-
puters, the absence of an elliptic problem, present in the
rigid-lid and implicit free surface methods, enhances the
processor scaling of the explicit free surface method.
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