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ABSTRACT

The equilibration of two-dimensional baroclinic waves differs fundamentally from equilibration in three
dimensions because two-dimensional eddies cannot develop meridional temperature or velocity structure, It
was shown in an earlier paper that frontogenesis together with diffusive mixing in a two-dimensional Eady wave
brings positive potential vorticity (PV') anomalies deep into the atmosphere from both boundaries and allows
the disturbance to settle into a steady state without meridional gradients. Here we depart from the earlier
explanation of this equilibration and associate the PV intrusions with essentially the same kind of vortex “roll-
up” that characterizes the evolution of barotropic shear layers.

To avoid subgrid turbulence parameterizations and computational diffusion, the analogy is developed using
Eady’s generalized baroclinic instability problem. Eady’s generalized model has two semi-infinite regions of
large PV surrounding a layer of relatively small PV. Without boundaries, frontal collapse, or strong diffusion
the model still produces equilibrated states, with structure similar to the vortex streets that emerge from unstable
barotropic shear layers. The similarity is greatest when the baroclinic development is viewed in isentropic
coordinates. The contrast between the present equilibrated solutions, which exhibit no vertical tilt, and Blumen'’s

diffusive frontogenesis model, which allows the wave to retain its phase tilt, is briefly discussed.

1. Introduction

The finite-amplitude equilibration of two-dimen-
sional baroclinic waves was described and analyzed by
Nakamura and Held (1989, hereafter NH) using a
primitive equation numerical model and Eady’s basic
state. According to semigeostrophic theory (Hoskins
and Bretherton 1972), an unstable Eady wave should
grow exponentially until the time of frontal collapse,
when the standard theory becomes invalid. Thereafter,
according to NH’s numerical solutions, the vertical
phase tilt responsible for growth begins to decrease and
the eddy energy stops growing. To explain this equil-
ibration, NH noted that the net effect of diffusion is to
increase the zonal-mean potential vorticity (PV) at all
levels. In semigeostrophic dynamics, the ambient PV
controls wave growth through its effect on the depth
of influence of boundary anomalies and on the ability
of the anomalies to counterpropagate against the
shear. The analogous dependence on ambient static
stability was invoked by Gall (1976) in his proposed
quasigeostrophic equilibration scenario. Based on the
semigeostrophic dynamics, NH attributed the ter-
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mination of wave growth indirectly to the increase in
zonal-mean PV,

It is clear from NH’s results that the generation of
positive PV anomaly in Eady life-cycle simulations is
due to horizontal diffusion of heat in occluding frontal
zones. The possibility that frontogenesis could be the
primary agency for baroclinic wave equilibration was
mentioned earlier by Orlanski (1986), although his
specific mechanisms involved energy dissipation
through turbulence or nongeostrophic waves, rather
than PV generation. While there is little doubt that PV
generation is involved in the equilibration, we see two
problems with the final part of NH’s explanation. Both
of these are evident in the PV field, shown in Fig. 1,
near the time of maximum eddy energy.! First of all,
the positive PV anomaly has not become homogenized
enough to have produced a global change in the internal
depth scale by the time the wave has begun to equili-
brate. Second, the separation between the rigid bound-
aries is probably dynamically irrelevant once tongues
of large PV extend well inside the domain. By then,
the PV tongues themselves can interact with each other.

A more appropriate—and in many ways simpler—

! The evaluation of Ertel potential vorticity for this figure corrects

‘a quantitative error in NH.
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FI1G. 1. Ertel potential vorticity in a finite-amplitude Eady wave
generated by a primitive equation numerical model. Solution is near
the time of maximum eddy energy. Contour interval is 5go (zero
suppressed ), where g, is the initial PV. The Rossby radius [defined
(90/f?)!/?H] and wavelength are 100H and 400H, respectively.

view of the equilibration begins to emerge as the rigid
boundaries are deemphasized. In NH, diffusion was
viewed as tapping the PV “reservoirs” that may be
considered implicit within the boundaries. Here we
propose to describe the equilibration as a “rollup” of
the relatively low-PV air mass confined between the
reservoirs. This terminology is based on an analogy
with the rollup of barotropic shear layers into isolated
vortices. A typical barotropic rollup is shown in Fig.
2, which is taken from a study by Pozrikidis and Hig-
don (1985). (The barotropic model will be described
more fully in section 2.) Growth of the eddy energy
culminates as the relatively small vorticity of the ex-
terior layers invades and spans the interior layer of
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FIG. 2. Evolution of vortex layer disturbed at wavenumber k = 1.0.
Times are (top) ¢ = 0, (middle) ¢ = 6, and (bottom) ¢
= 15. (From Pozrikidis and Higdon 1985; wavenumber and time
are scaled by the width and vorticity of the layer.)
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relatively large vorticity. Eventually, isolated vortices
emerge. It is clear that equilibration through vortex
roll up cannot be described in terms of linear waves
propagating in a modified mean flow.

The baroclinic-barotropic analogy is not self-evident
in all of its details. For example, the interfaces between
PV layers in the baroclinic model have two dimensions
rather than one. The analogy becomes clearer when
the baroclinic development is viewed in isentropic co-
ordinates. On isentropic surfaces, the basic state has
meridional structure and the boundaries between PV
regions appear as one-dimensional interfaces. As we
will see, the imposed two-dimensionality of the dis-
turbance makes all such surfaces identical insofar as
the perturbations are concerned. The PV is closely
analogous, in this context, to the negative reciprocal
of the barotropic vorticity.

In order to reduce the ambiguity associated with
frontal collapse and diffusion, we consider the baro-
clinic development in the context of a generalized
model of baroclinic instability. The more general
model, diagrammed in Fig. 3, contains two semi-infi-
nite, uniform-PV regions surrounding a layer with
smaller PV. There are no geometric boundaries to deal
with. This “three-regime” model was introduced by
Eady (1949), who suggested that it might apply to el-
evated cloud layers. In the limit where the outer regions
have infinite potential vorticity, the interfaces become
dynamically rigid and the more familiar Eady model
is recovered. For comparison, Fig. 3 includes a diagram

Uz)
4
£ q
2z l\\/l yia 1
6-‘- const | ’
t—»x j/ H q9=9,
i
L //4" )
R, ~—_ 7 q_]

y—|

(a) Baroclinic Model

Uly)

] “
P )
|

=5

e — —d

.

(-
(b) Barotropic Model

FI1G. 3. Diagrams of the (a) baroclinic and (b) barotropic models
used in this study. Symmetric distributions of vorticity and potential
vorticity are shown. The horizontal surfaces in (a) are the undisturbed
isentropes.
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of the barotropic shear-layer problem. The classical
problem considered by Rayleigh (1894 ) has been gen-
eralized by allowing the two outer layers to have ar-
bitrary (not necessarily zero) vorticity.

In section 2, we obtain nondiffusive numerical so-
lutions of the generalized baroclinic instability problem,
and concentrate on the finite-amplitude behavior. In
section 3, isentropic coordinates are introduced in order
to make a cleaner comparison between the baroclinic
and barotropic problems. The discussion in section 4
is concerned mainly with how the diffusive frontogen-
esis model proposed by Blumen (1990) compares with
the present view of finite-amplitude Eady waves.

2. Unbounded models of baroclinic instability
a. Linear properties

The baroclinic and barotropic instabilities that we
are comparing are of the “inflectional” type, most nat-
urally understood as an interaction between counter-
propagating edge waves (Hoskins et al. 1985; Sakai
1989). Potential vorticity discontinuities support
baroclinic edge waves in much the same way as vor-
ticity jumps support barotropic ones. In a quasigeo-
strophic model, vertical PV jumps are represented as
sheets of infinite “pseudo-PV”’ anomaly. The integrated
strength of these sheets varies linearly in the meridional
direction. The Charney-Stern (1962) necessary con-
dition for instability is satisfied if the middle layer has
either a maximum or a minimum of PV, but Fjertoft’s
(1950) theorem requires that it be a minimum in order
for the meridional pseudo-PV gradients on the inter-
faces to be positively correlated with the zonal velocity.

To see that the necessary configuration is actually
unstable, we solve for the quasigeostrophic normal
modes. For simplicity, consider an incompressible,
Boussinesq fluid. The perturbation geostrophic
streamfunction ¢ is then a solution of (e.g., Pedlosky
1987, section 6.8)

bxx + [(F2IN ). = Ol f, (1)

where N2(z) is the basic static stability and fis the
Coriolis parameter. The quantity Q7, is what was re-
ferred to above as pseudo-PV anomaly. The meridional
velocity component v, and potential temperature
anomaly 6’ (reference value ;) are related to the
streamfunction by ¢, = fv, and ¢, = g8'/6, = b'.
Since pseudo PV is conserved following the geostrophic
motion, the perturbation is governed by

(/0t + 0/ 3x) Qe = vx(8/92)(f*A/N?),  (2)

where the basic flow is i = Az, with b = N%z — fAy.
Since N? is uniform in the layers, it follows that normal
modes have @), = 0 everywhere except at the inter-
faces.

The perturbation streamfunction must be bounded
at infinity and continuous at the interfaces. The other
interface condition is derived from the conservation of
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potential temperature and the continuity of the vertical
velocity. For a QG disturbance, the virtual interface
displacement, 8, is related to the vertical velocity, w,
by w = (8/0t + #d/dx)é. The potential temperature
equation is then

(8/0t + 7d/9x)(b' + N?8) = A¢y, z= +H/2, (3)

where H is the depth of the middle layer. For continuity
of ¢, we must have §(x, £) = —Ab'/A(N?), with A
indicating an interfacial jump.

The dispersion relation for normal modes of the
problem (1)-(3)is derived in appendix A. Growth rates
for symmetric distributions of N? are shown in Fig. 4
for several choices of the ratio between values of NZ in
the inner and outer layers. Defining § = fN? as the
basic potential vorticity, we refer to these values as go/
fand q../f, respectively (cf. Fig. 2a). Linear instability
requires that ¢o/g+, < 1, according to the theorems
cited at the beginning of the section. The standard Eady
model (go/ g+ = 0) is the most unstable, with a max-
imum growth rate of ¢,, = 0.31 at k = 1.61 and a short-
wave cutoff at k., = 2.40 [k and ¢ are normalized by
(f3/q0) *H™" and (A%f/qo)'’*f, respectively]. The
cutoff wavenumber is most sensitive to the PV ratio
when the latter is small, whereas the maximum growth
rate changes most rapidly as the PV ratio approaches
unity.

Also shown in Fig. 4 are growth rates for the linear-
ized barotropic problem mentioned in the Introduction
(cf. Fig. 2b) and solved in appendix A. Results in the
figure are for symmetric distributions of the vorticity,
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FIG. 4. Growth rate vs wavenumber in the symmetric (a) baroclinic
and (b) barotropic models for different ratios of inner-to-outer vor-
ticity or PV. Growth rate and wavenumber are scaled by f/Ri'/>and
L™, where Ri = go/(fA?) and L ={go/f*)'/*H. For the symmetric
basic states, the unstable modes move with the vertically averaged
basic flow, irrespective of wavenumber.



1 NOVEMBER 1992

§ = —diu/dy; that is, {; = {_;. The necessary condi-
tions for instability are satisfied if | {+;/ | < 1 (kand
o are normalized by L~!, where L is the middle-layer
width, and ¢, respectively). The barotropic problem
differs mathematically because of the constancy of the
coefficients in the diagnostic equation for perturbation
vorticity,

Vax + ¥y = [ (4)

which is the counterpart of (1). Corresponding to (2),
we have

8/t + #0/dx)¢ = —v'(8/9y)§. (5)

In normal-mode solutions, {" = 0 within the layers of
uniform ¢.

The barotropic problem also has a simpler relation-
ship between the virtual interface displacement, say
n(x, t), and the perturbation streamfunction . Since
the velocity perturbation is (u', v') = (—y,, ¥x), the
zonal momentum equation and continuity of pressure
imply

(9/0t + 1d/dx)m =, y==%xL/2, (6)

where 1 = — A(y,)/A{. The case |§u1/$| = 0, anal-
ogous t0 gy/g+; = 0, is the most unstable, with o,,
= 0.20 at k = 0.79 and a cutoff at k. = 1.28.

There is a way to rewrite the baroclinic matching
condition (3) in a symmetric form like (6). It can be
shown—either by manipulating (3) or by integrating
(2) across the interfaces—that the baroclinic condition
is equivalently

(/0 + ud/dx)m; = dx/f, (7)

where n; = A(b'/N?)/ A(fA/N?). Note that §;, = —b'/
N? is the (linearized) vertical displacement of an is-
entropic surface at a fixed latitude. The denominator
in the definition of 5; involves the slope, o; = fA/N?,
of the basic isentropes. Therefore, n; = —Aé;/Aq; is
the linearized meridional displacement of an interface
in isentropic coordinates. Since the source of differences
between the barotropic and baroclinic linearized mod-
els can be confined to the coefficients in the respective
streamfunction equations, we see that differences be-
tween ¢ and ¥ will be noticeable only for large contrasts
in vorticity and PV. The simplicity of (7) is one of the
reasons why it is natural to study the two-dimensional
baroclinic problem in isentropic coordinates. We will
return to that approach in section 3.

b. Finite-amplitude properties

To study the three-regime model at finite amplitude,
we avoid the standard quasigeostrophic (QG) model.
In that model, two-dimensional waves do not equili-
brate at all (they retain their modal structure for all
time ) because the vertical advection of PV anomalies
is ignored. Instead, we use a numerical model based
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on the semigeostrophic (SG) equations (Hoskins and
Bretherton 1972; Hoskins 1975), in which vertical ad-
vection includes the perturbations. In an application
with large vertical PV variations, the QG and SG mod-
els are similar only at small amplitude. In the small-
amplitude limit, vertical displacements of an interface
in the SG model correspond to the jumps ( vertical dis-
continuities) in perturbation temperature in the QG
model. For example, a raised interface corresponds to
a negative jump if N? is larger in the upper layer. In-
terface displacement appears in the linearized SG
problem exactly as the virtual displacement d appears
in (3) (e.g., Blumen 1980).

The numerical model is formulated in “geostrophic”
coordinates (X = x + v,/ f, Y=y — u,/f, Z=z). The
diagnostic equation for the perturbation streamfunc-
tion in the two-dimensional Boussinesg SG model with
zonally symmetric basic state is

(qsg/f3)<pXX + <I)ZZ = q;g/f; (8)

where ® = ¢ + 1(¢,/f)?* and the fotal PV, gy, is con-
served following the total flow (Hoskins 1975). To in-
itialize, the two interfaces are perturbed with small si-
nusoidal displacements phase shifted in a manner con-
sistent with a growing normal mode near the most un-
stable wavelength. The phase shift is downshear with
height, like that of the potential temperature anomaly
in a growing QG wave. The interfaces are subsequently
moved by the combined basic flow and ageostrophic
circulation. The ageostrophic streamfunction, X, is ob-
tained from

[(gse/ f ) Xx1x + Xzz = —2A%xx 9)

(Hoskins 1975). If 8(X, T') is the height of the interface
(so that db/dk is the vertical velocity at the interface),
we have 36/0T = —u06/3X + w, where T is the local
time in geostrophic coordinates and w = —Xyx/(1
— v'y/f). This gives a forecast of the interface position.

If the position of the interfaces is known, then so is
d(X, Z), and a horizontally periodic solution for (X,
Z) can be obtained by solving (8). That solution de-
termines the right-hand side of (9), from which X(.X,
Z)and 35/9T are then calculated. Since the interfaces
are gridded in the horizontal direction, that is, 6 = 8(.X,
T), they cannot overturn in the XZ plane. This arti-
ficially prevents extreme filamentation and wrapping
of the PV regions. The alternative is to use tracers of
the two-dimensional flow to represent the interfaces,
but we have not attempted that calculation. Because
of the variability of the coefficient g, in (9), it is not
possible to apply the methods of “contour dynamics”™
(e.g., Dritschel 1988; Pozrikidis and Higdon 1985) di-
rectly to the baroclinic problem.

The two streamfunctions, ® and X, are computed
using finite differences on an 80-by-80-point grid. To
meet the boundary conditions at infinity, outwardly
damped vertical structures are selected for each resolved
horizontal scale. The method is described more fully
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FIG. 5. Evolution of the baroclinic wave with wavenumber k = 1.26 (wavelength 5.0) in the semigeostrophic three-regime model with
4, = ¢-1 = 7¢o. Times are (top) ¢ = 2.4, (middle) ¢ = 7.2, and (bottom) ¢ = 12.0 (time and horizontal distance scaled as in Fig. 4). Shown
are vertical cross sections in physical space of the meridional velocity v} (left) and the total potential buoyancy b + ' (right). The interfaces
between PV regions are traced with heavy lines. The vertical axis is scaled by the undisturbed interface separation H. Contour intervals are

o0 = 0.2(qo/f)"*H and 6b = 0.4(go/f)H.

in appendix B. The initial amplitude of the displace-
ments is 0.1H, where H is the undisturbed depth of
the middle layer. The solutions will be shown as Y
sections in physical (xz) space.?

The first case that we consider (Fig. 5) has equal PV
values in the two outer regions, with an inner-to-outer
PV ratio go/ g1 = 1/7. The depth of the computational
domain is twice the undisturbed depth of the middle
PV region. There is a period of faster-than-exponential
growth of the intrusions lasting until about ¢ = 6 [units
of Ri'’2/f, with Ri = gqo/(fA?)], which represents
about 1.5 e-folding times based on the linear analysis.
This behavior is evidence that the horizontal conver-
gence in the secondary circulation increases faster than

2 The choice of cross section makes a small difference in the po-
tential temperature plots, since (8b/3Z)y = q,/f while (8b/3z),
= g,/ f+ A% In order to regard the present maps of total potential
temperature as y sections, one must ignore the vertical advection of
# in the zonal momentum equation (so that v = v,), as in the original
model of Hoskins and Bretherton (1972). This technicality will come
up again in section 3.

exponentially in the cyclonic parts of the wave, as in
the standard SG Eady model prior to frontal collapse.
At around ¢ = 6, when the intrusions have achieved
the same depth as the original middle layer, the growth
rate begins to decrease rapidly. By ¢ = 12, the solution
is essentially steady.3

The second case (Fig. 6) also has a symmetric PV
distribution, but with stiffer interfaces, go/g+1 = V50.
This choice is much closer to the “Eady limit” of zero
PV ratio. The computational domain for this solution
is 1.5 times as deep as the undisturbed middle-layer
depth. With vertical motion more inhibited near the
PV jumps, the ageostrophic circulation can produce
smaller horizontal scales where the interfaces fold in-

3 Since (X ) is single valued, the overturning of the PV interfaces
in Fig. 5 shows that (8x/dX),, the partial derivative following the
interface, must be changing sign. The sign changes occur on the con-
cave side of the cusps in the intrusions and are due mainly to the
vertical variation of v, in X Z space. The horizontal derivative (dx/
34X )z is of one sign and, accordingly, the vorticity dv,/dx is finite
everywhere in the present solutions.



1 NOVEMBER 1992

v =24

l"ﬁ‘. L=

ol 3

£ -

st ]

= O —

= - ]

1o} 5 ]

wl L 4

T osf ]

—05P 1

-30 3.0

2

o5l ' .

T X . b

< B : : B

= 5 b P .

N P P g

& f : b ]

) - N (R -

b= =g L Y Vo ~

—0.5|- - VY .

- \ ]

-30 20 10 0 10 20 30

- =120

05 p

T - ]
~ -

: ]
= o

I = -

<] L 1

(o) - .

= - - -

03 E

.30 3.0

HORIZ. DISTANCE (x/L)

GARNER ET AL.

b

pal oy g by d

.
0 3
b t=7.2
0.5
r
)_ et e e
O 0
-0.5F-
-39 -20 210 0 10 20 3.0
b =12.0

1.0

-2.0 S10 0 20

HORIZ. DISTANCE (x/L)

FIG. 6. As Fig. 5 but for the case ¢, = g, = 50q,, and k = 1.26 (wavelength 5.0).

ward. The equilibration behavior, however, is quali-
tatively similar to the first case. Precisely because of
the stiffness of the diagnostic equations with g., > ¢,
it is not possible to get much closer to the Eady limit
with our balanced numerical model. If a unique so-
lution exists in this limit, we expect that the intrusions
will be infinitely narrow filaments supporting discon-
tinuities of wind and temperature, qualitatively like
the frontogenesis solution obtained by Cho and Koshyk
(1989) using deformation forcing.

The third solution (Fig. 7) has an asymmetrical basic
PV distribution, with g_,:go:g; = 50:1:7. For simplicity,
we eschew the normal mode in this case and perturb
both interfaces with the same initial amplitude. The
undisturbed middle layer is half as deep as the com-
putational domain. The asymmetry of the basic state
does not prevent the disturbance from becoming quasi-
steady at finite amplitude. The region of large PV cre-
ated by the intrusions settles down a little to the right
of center (the initial perturbation is centered about x
= 0). This is mainly because the steering level for the
asymmetric linear modes is above middepth when g,
< g-1, as noted in appendix A (cf. Fig. 11). The dif-
ference in the widths of the lower and upper intrusions
reflects the difference in stiffness of the two interfaces. -

The asymmetric example can be considered a crude
model of the midlatitude troposphere and stratosphere
in which surface frontal collapse and/or horizontal
thermal diffusion provide the possibility of narrow PV
“intrusions” from below. Thus, it is closer to the grid-
point simulation by Orlanski (1986), who found a
similar quasi-steady state. Intrusions of large-PV air at
the lower interface differ in one important detail from
occlusions in the atmosphere. The process of occlusion
(e.g., Fig. 1) tends to generate large PV within strips
of relatively warm air at the ground, whereas the anal-
ogous PV structures in the three-regime model contain
anomalously cold air. The distinction disappears when
the structures are very narrow, in which case most of
the PV anomaly is due to the wind shear. We note that
at early times, the upper intrusion in Fig. 7 resembles
the broad tropopause lowering recently documented
by Hirschberg and Fritsch (1991), although the (three-
dimensional) cyclogenesis in their case comes to an
end before reaching a state like that shown in the bot-
tom panel of Fig. 7.*

4 The referenced paper was pointed out to us by a reviewer.
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In all of the nondiffusive solutions, the initial vertical
tilt of the PV anomalies is effectively eliminated by the
gradual extension of the intrusions. As this happens,
the disturbance becomes more symmetrical and the
PV contours can become aligned with the total flow
in the xz cross section. The streamfunction for the total
flow in the case go/ g+, = 1/50 is shown in Fig. 8 at ¢
= 9.6. By this time, the alignment is essentially com-
plete (within the resolution of the model) and the
“braids” connecting the isolated vortices have all but
lost their dynamical importance. An analogous align-
ment of vorticity and streamfunction contours char-
acterizes an equilibrated barotropic disturbance. The
barotropic example in Fig. 8, shown for comparison,
is from the simulation by Pozrikidis and Higdon (1985)
previously seen in Fig. 2.

The numerical procedure in the referenced work al-
lows more extensive wrapping of small-vorticity fluid
around centers of large vorticity. Fundamentally, how-
ever, the barotropic state is'less complicated in that
the velocity anomaly is directly related to the vorticity
anomaly. The baroclinic disturbance depends on a
secondary (ageostrophic) circulation to keep the
“tower” of large PV from being tipped over by the
basic shear. The ageostrophic circulation arises to
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and (bottom) barotropic case of Fig. 2 (¢ = 16.5). Barotropic solution
is from Pozrikidis and Higdon (1985).
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maintain the balanced vortex against destruction by
advection of perturbation wind and basic temperature.
The baroclinic rollup is similar to the barotropic rollup
only because the secondary circulation determined by
(9) comes into phase with the relative vorticity and
PV anomaly fields as the vertical phase tilt disappears.
Alignment of the three-dimensional flow with the is-
entropic surfaces is implicit in steady baroclinic dis-
turbances.

The present model does not reproduce the temporal
oscillation of domain-averaged PV that occurs in NH’s
diffusive primitive equation simulation. From their
sensitivity tests, it is clear that the oscillation is asso-
ciated with diffusive “reabsorption” of PV anomaly
into the anticyclonic parts of the boundary (which are
cooled or warmed mainly by vertical fluxes). Also
missing from the present simulations is the oscillation
of the tilt of the PV tower, as defined by the location
of the PV anomaly concentrations at the two bound-
aries. In the diffusive solution, these concentrations are
sheared past each other, then diffused horizontally and
partially reabsorbed, after the wave stops growing. An
episode of relatively weak cyclogenesis, frontogenesis,
and PV generation then reestablishes the original tilt.
The nondiffusive model captures the time-averaged
structure of the diffusive solution at large times, but
eliminates a lot of the transience. Apparently, the
alignment that eliminates PV advection is more elusive
for complicated PV distributions and ongoing diffu-
sion.

3. Formulation in isentropic coordinates

The similarity between the baroclinic and barotropic
life cycles is obscured somewhat by the possibility of
potential temperature advection in all three directions
in the baroclinic problem. Changing to isentropic co-
ordinates conceals this difference and reduces the di-
mensionality of the velocity field and fluid interfaces
to that of the barotropic problem. Although the velocity
in the isentropic baroclinic model must have a diver-
gent component (associated with vertical stretching),
the y invariance of the perturbation at constant z en-
sures that the disturbance looks the same on any is-
entropic surface. Changing to isentropic coordinates
provides a better perspective on the nonlinear equili-
bration, especially near the “Eady limit.”

The height of an undisturbed isentropic surface is
Z(y) = (f*A/q)(y — y;), where y; is a constant for
each isentrope in each uniform-PV layer. The basic
flow is therefore #(y) = Ri ' f(y — y;), where Ri = g/
(fA?), the Richardson number of the layer. An un-
stable basic state in isentropic coordinates is depicted
by the barotropic diagram in Fig. 2. The undisturbed
profile #(y) can be reinterpreted as either i2(y) or z(y).
The balance approximations (QG and SG), as applied
to Eady’s model, are based in part on the largeness
of Ri.
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The momentum equations may be written, as usual,
in the form

du/dt = f(v—uv,) (10)
dv/dt = — f(u — ug). (11)

However, the parcel derivative is d/dt = 3/t + ud/
dx + vd/3dy and differentiation is at constant b (with
the flow assumed to be adiabatic). If P is the pertur-
bation geostrophic streamfunction, we have (ug, vg)
= (—P,/f, Py/f). The height anomaly z' = z — z(y,
b) is related to the streamfunction via hydrostatic bal-
ance (e.g., McWilliams and Gent 1980):

Pb =~z

(12)

For incompressible Boussinesq motion, the xyb geo-
strophic streamfunction is the sum of the xyz stream-
function, say p, and the Boussinesq potential energy.
Thus, P = p — bz — P(y, b). The basic state satisfies
P, = — fuand P, = —Z. Finally, the continuity equation
has the form

(d/dt)zy = —(ux + v))zp. (13)

The dependent variables in (10)-(13) are u, v, P, and
z. The non-Boussinesq isentropic system, with a fifth
dependent variable, is discussed by Hoskins and
Draghici (1977).

The present system conserves the Boussinesq poten-
tial vorticity, ¢ = (zp) '(f+ vx — u,). After applying
the geostrophic momentum approximation (Hoskins
1975)to (10)—(11), conservation of PV becomes dg,,/
dt = 0, where

dsg = (Zb)_l(f+ vgx)(f— ugy)/f' (14)

Since the disturbance is two-dimensional, all isentropic
surfaces are the same and we are able to replace d/db
by (~1/ By)a/ dy. It is also helpful to nondimension-
alize. In the xz plane, balanced disturbances have an
aspect ratio of order (f*/g)'/2. Dividing by the (un-
disturbed) slope of the isentropes, «; = f2A/q, we de-
termine that y scales on isentropic surfaces will be
greater by a factor of Ri!/? than x scales. This anisot-
ropy is absorbed in the scales (x, ¥)~ (1, Ri'/?)(go/
£*)2H for horizontal distances. Since zonal and me-
ridional advection are equally important in balanced
disturbances, the velocity components should be scaled
according to (u, v)~ (1, Ri'/?)AH. From now on, we
define Ri = go/(fA?).

If the PV, absolute vorticity, and height are scaled
by qo, f, and H, respectively, the expression (14) for
the PV in the two-dimensional, isentropic SG model
becomes g, = (z,) ' (1 + v, )(1 — Ri™'u,,). We shall
ignore the term involving u,, since other terms of order
1/Ri have been neglected elsewhere. The resulting
quantity is the one conserved by the equations intro-
duced by Hoskins and Bretherton (1972), in which
the left-hand side of (10) is neglected (and v = v,).
With v = v,, the horizontal divergence becomes u,
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+ v, = (U,)x, Where u, = —(1/f)dv,/dt. We continue
to refer to the approximation as semigeostrophy (SG).

Conveniently, the last adjustment makes the diag-
nostic problem for the geostrophic motion formally
linear. For a zonally symmetric basic state, the pertur-
bation streamfunction equation [corresponding to
(14)] is now

hP, + P,, = —h'. (15)

where Pis scaled by (go/f?)H?and A= gq;'. The non-
Boussinesq form of 4 has been called the potential den-
sity (Magnusdottir and Schubert 1990). If time is scaled
by Ri!/?/f, the nondimensional derivative, d/dt, ex-
pands to exactly the same expression as that following
(11). Conservation of PV may be expressed as dh/dt
= 0.

A comparison between (15) and (4) reveals a close
analogy between 4 and —{. Both |{| and |A| are
smallest in the outer regions of an unstable three-regime
model (for stability to overturning in the y direction,
h is restricted to positive values, as is the quantity {
+ fif there is background rotation in the barotropic
problem). The barotropic zonal velocity anomaly, u’
= —y,, is analogous to the isentropic height anomaly
and geostrophic zonal-flow anomaly, since z' = u
= — P, (hydrostatic balance and definition of u,). Thus,
z' must be matched across the PV jumps in the isen-
tropic model. At small amplitude, this is achieved by
imposing (7), with ; = —Az'/ Az, at the undisturbed
interface positions (also see appendix A). The term
P,,in (15) corresponds to the thickness of the isentropic
layers or the slope of the isentropic surfaces.

In the previous section we mentioned the necessary
alignment of the ageostrophic circulation with the PV
contours and interfaces. From (10)-(12), it is
straightforward to derive the isentropic form of the
Sawyer-Eliassen equations, which determine the ageo-
strophic part of the flow:

(hU),+ W, =0
U, — W, = —2F.

Here U= —dv,/dt, W=d,z/dt, F = 0(v, ug)/(x,
v), and d,/dt = d/dt — u,0/9x (the time derivative
following the geostrophic motion). Hence, the ageo-
strophic component 1, is available diagnostically by
solving

I

See + (B7'S,), = —2F (16)

for S, where S, = hU = z,u, and S, = —W. Since du/
dy = h, one has F ~ hv,, at small amplitude. In that
limit, W (here scaled by fH/Ri'/?) is the ordinary ver-
tical velocity in z coordinates.

We mention in appendix B how to alter the nu-
merical model to solve (15) and (16) instead of (8)
and (9). Figure 9 shows the u, field at ¢ = 12 for the
case hy/h, = lf7 obtained using an xpb coordinate
model. The figure includes a plot of the isentropic
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FI1G. 9. Isentropic plots of (top) u, from the isentropic model and
(bottom) z = Z + 2’ from the z-coordinate model, both at ¢ = 12.0.
The interpolation of z(x, y) to a b surface in the bottom panel takes
advantage of the constancy of db/dy and the implied identity between
b and y. The wavenumber, PV ratio, and scaling are the same as for
Fig. 5 except that the y axis is contracted by a factor Ri'/2. Contour
intervals are 6u = 0.1AH and 6z = 0.1H.

height anomaly obtained by interpolating the xyz
model solution to an isentropic surface. Theoretically,
ug(x, y) is identical to the height z(x, y) of a b surface.
Discrepancies here are due to the different zonal res-
olutions in the models and to the fact that the xyb
solution was continued past the time when the inter-
faces cross the computational boundaries ( violating the
assumptions made in imposing the computational
boundary condition).’

The two streamfunctions P + P and S are plotted
in Fig. 10. It is clear that S is coming into phase with
the PV tower and the geostrophic streamfunction P.
This allows an alignment of the PV contours with the
total velocity, u = u, + 1,4, v = v,. When the alignment
is complete, dz/0¢ vanishes and the “advection” of z
by the geostrophic flow becomes identical with . Note
that the PV tower is preserved by meridional deflection
of the flow (v;) in isentropic coordinates, whereas the
crucial deflection is in the vertical (w) in xyz coordi-
nates. In isentropic coordinates, the vertical deflection
is implicit.

Advection by u, is peculiar to the baroclinic model.
Its effect is always to tighten the folds of the interfaces,
since these develop in regions where du,/dx < 0. The

> Working in isentropic coordinates suffers the disadvantage that

_ horizontal resolution does not collapse with disturbance scales as in

geostrophic coordinates. The vertical resolution is generally improved,
but that advantage is offset by the need for more distant computational
boundaries to contain the disturbance in the y direction.



i NOVEMBER 1992

MERID. DISTANCE (y/t)
(=]
T 1 I Trvo1 1 I TT1T110 ] LIRS

|
w
w (=]

T

1.0

MERID. DISTANCE (y/B)
[=)

L AL B UL |

IS B R

-1.0 4] 1.0 20 3.0
ZONAL DISTANCE (x/L)

F1G. 10. Isentropic plots of ( top) total geostrophic streamfunction
P + P and (bottom) ageostrophic “streamfunction” § for the same
time and parameters as in Fig. 9. The solution is obtained directly
from the isentropic model. Contour intervals are 6P = 0.1(go/f ) H?
and 6S = 0.1AH>.

other peculiarity is the variable coefficient in (15),
which produces a stiffness in the response to PV anom-
alies when variations of /# are O(1). In the isentropic
formulation, the stiffness shows up not in the y dis-
placements, but in the responsiveness of the z field.
From inspection of (15), the nondimensional zonal
scales of the intrusions must be comparable to
Vh, / ho before the slope z, = —(P + P),, can vary sig-
nificantly within the intrusions. This means that in stiff
cases, there is little vertical motion in the PV tongues
until they become very narrow. In the Eady limit, the
tongues must collapse to filaments (and discontinuities
must form) before they can come unstuck from the
boundaries.

Vertical PV advection (relative to z) is implicit in
isentropic models, regardless of how the explicit ageo-
strophic advection is treated (e.g., McWilliams and
Gent 1980). This suggests that there are alternatives
to the SG model for studying finite-amplitude equili-
bration. If one makes the usual QG decision to neglect
ageostrophic advection and basic PV variations along
geostrophic trajectories, one gets a model with linear-
ized isentropic vorticity and continuity equations that
conserves the quantity

dgg = (v’g)x - (Z’)b'
Here, z' is the small departure from mean isentropic
height. The diagnostic problem in the “isentropic QG
model is therefore like (15) but with constant coeffi-
cients. Unlike the standard, z-coordinate QG model,

it would predict equilibration, though it still differs from
the barotropic model because large PV variations are
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excluded. We have used the SG model in this study in
order to keep convergence feedback in the vorticity
generation and to allow strong vertical PV variations.

4. Discussion

Nakamura and Held (1989) emphasized diffusion
as an ingredient in two-dimensional wave equilibration.
Here we have found that by resolving the two large-
PV “reservoirs” that are implicit in the standard Eady
model, the role of diffusion can be eliminated without
changing the life cycles in any significant way. It has
been necessary to replace the equilibration scenario
proposed by NH with an interpretation involving PV
rollup. PV rollup is still different from the essentially
dissipative processes of equilibration suggested by Or-
lanski (1986) and Blumen (1990). We will say more
about Blumen’s model shortly.

Over a full wavelength, the total PV source reduces

" to contributions from horizontal boundaries, namely,

9 (H? (L L H/2

— f qudz=f (f+vx),Z”'

Ot J-H/2 J-L ~L _H/2
where # is the diffusive heating and cooling. In a
primitive equation model like the one that produced
Fig. 1, the net source is positive because the warm air
pinches off at the lower boundary and the cold air
pinches off at the upper boundary (essentially owing
to the scale dependence of # rather than the factor f
+ v, which is offset by the relative widths of the heated
and cooled regions). Vertical advection combines with
a little interior horizontal mixing to redistribute the
PV along the deepening occlusion. The similarity in
the structure and behavior of the PV anomalies be-
tween the diffusive and nondiffusive numerical solu-
tions suggests that the major role of diffusion is simply
to give resolution to frontal discontinuities as PV
structures.

In our nondiffusive model, potential vorticity
“tongues” are fully resolved and grow entirely through
advection. This process is probably not fundamentally
different from the extension of the frontal discontinuity
by adiabatic processes in the Eady limit. Cho and
Koshyk (1989) developed an analytical model for the
balanced, nondiffusive extension of a surface of dis-
continuity when the frontogenetical forcing consists of
horizontal confluence. The analogous Eady-wave so-
lution is evidently more complicated to obtain, and
computational constraints keep us from looking at the
Eady limit in our balanced numerical model. We can
note, however, that in the primitive equation solution
shown in Fig. 1, the vertical extent of the first PV con-
tour is well predicted between t = 24 f ~'and ¢ = 36 f !
by using the average vertical velocity, w ~ 0.05fH,
near the top of the PV intrusion during the period. The
interior PV evolution thus appears to be primarily ad-
vective in that model.

With the aim of studying Eady waves after the time
of nondiffusive frontal collapse, Blumen (1990) de-

dx,
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veloped an analytical model of frontogenesis with im-
plicit heat and momentum sources. The dynamics of
his model are contained in surrogate momentum and
thermodynamic equations [his (6), (9), (19), and
(A18)] and an asymptotic matching condition. Since
these are not related in a simple way to standard mo-
mentum and thermodynamic equations, we do not
know the exact nature of the underlying sources of
momentum and heat. However, it is clear from in-
spection of his Figs. 2 and 3 that large values of poten-
tial vorticity develop in the frontal region. The model
actually reverses the sign of the vertical stratification
anomaly in the frontal zone (from negative to positive),
while retaining large values of cyclonic shear. This
“occlusion” process necessarily generates large positive
PV anomalies.

The PV generation in Blumen’s model captures
qualitatively the process occurring in primitive equa-
tion gridpoint simulations. However, his solution does
not “equilibrate” in the same way: the structure of the
PV anomaly retains a phase tilt for all time and the
wave continues to grow exponentially outside the dif-
fusive regions. In numerical solutions with rigid
boundaries and diffusion, considerable displacement
of the PV concentrations occurs, always in the direction
of u and w. Cho and Koshyk’s solution also suggests
that rotation or lateral movement of the front cannot
be avoided if the full conservation constraints are re-
tained.

The discrepancy between the models is apparently
related to the arbitrariness of the asymptotic matching
condition used by Blumen to position the frontal re-
gions. In contrast to Cho and Koshyk’s (1989) method,
the position of a front, say X = X(Z, T), is a free
parameter in Blumen’s model, within certain bounds
similar to those discussed by Cho and Koshyk in con-
nection with their Fig. 3. Blumen’s decision to fix X
for all time (deliberately preserving the inviscid wave
geometry) may imply an unusual choice for the ratio
‘or distribution of the diffusivities of heat and momen-
tum. We still expect wave equilibration in models that
use conventional mixing parameterizations (based on
comparable downgradient fluxes of heat and momen-
tum) to resemble the nondiffusive process represented
in the model with resolved PV intrusions.

A two-dimensional simulation of cyclogenesis ex-
aggerates the importance of surface diffusion, not only
by prolonging the growth, but also by highly correlating
vorticity (hence horizontal scale) with temperature
anomaly. A realistic alternative to diffusive surface
cooling as a source of PV is elevated warming due to
condensation. Condensation is always tied to the ver-
tical motion field and does not depend on the nature
of the frontogenetical forcing. Thanks to this further
PV source in nature, surface “intrusions” may well be
as common in the atmosphere as stratospheric intru-
sions. Joly and Thorpe (1990) studied the growth of
disturbances on strips of positive PV anomaly produced
by low-level condensation. Although the net PV source
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due to interior nonadiabatic effects must be zero, the
PV tongues in their simulations and cited case studies
bear a resemblance to those produced by diffusive
mixing of temperature in a frontal occlusion.

Our interpretation of the two-dimensional model
with resolved PV reservoirs provides an alternative view
of stratospheric intrusions and PV generation at a sur-
face front. At least in the two-dimensional framework,
these PV structures can be viewed as a manifestation
of the roll-up of the troposphere! Although two-di-
mensional models are bound to produce caricatures of
midlatitude cyclones, the picture that has emerged may
help in interpreting the effect of strong vertical PV
variations and boundary sources on baroclinic wave
equilibration in three dimensions.
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APPENDIX A

Normal Modes in the Linearized
Three-Regime Models

The nondimensional streamfunction equations (15)
and (4) can be written simultaneously as
&Pxx'*'Pyy:_'Y’a (A1)

where vy represents 4 or —¢{ and 4 stands for 4 or 1 in
the respective models. For normal modes, 4’ = 0 except
at the internal boundaries. There the perturbation
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streamfunction P must be continuous and satisfy the
linearized matching condition

1
y=i_2's

(9/0t + yd/ox)n = Py, (A2)
where 5 = A(P,)/Av. For example, n = —Az'/AzZ,in
the baroclinic problem [cf. (7)].

We define 4.y = 1 — v.1/v and ai; = ¥../90,
where the subscripts ~1, 0, and 1 refer to the lower,
middle, and upper layers, respectively (cf. Fig. 2). An
unstable configuration must have 4 > 0 at both inter-
faces, according to the theorems cited in section 2. In
the baroclinic model, 4 < 1 and the limit 4 = 1 («
= 0) corresponds to a rigid boundary. The parameter
« determines the characteristic y scale in the outer re-
gions compared to the inner region. It is always unity
in the barotropic model but varies with the PV in the
baroclinic model. In the limit where the PV jumps are
small (a = 1), the two linearized models become in-
distinguishable.

Normal-mode solutions of (A1) have the form P(x,
vy, t) = P(y) exp[i(kx — wt)], where

( asinh(ky) + b cosh(ky), |y| <

M=

..k k
[ia sinh 3 + b cosh —2—]

Xexp[—aﬂk(lyl —%)] Iyl >%. (A3)

Hence, if the interface “displacements” are 7.,(x, t)
= 7. exp[i{kx — wt)], one has

k k k
"'+ _— — + 1 —_
N+1 i [a cosh 2 b sinh 5

+ ail[a sinh —215 + b cosh lg” . (A4)

Substitution of (A4) into (A2) yields the condition

w(tanh§+a)+(ﬁ—§&)

k k -
—(coth—+&)—A—w&

%tanh%c =
2 2

]—(tanhl—c+' - A — wa
2 2 o @Wwa

w(coth-’2f+ a) + (A‘ —]EC&)

where the overbar and hat refer to half the sum and
half the difference, respectively, of quantities in the
upper and lower layers.

Frequencies w that satisfy the second equality in (A5)
come in pairs, w, + iw; and w, — iw;, where w, is real
and w; is real or imaginary. The second equality in
(A5) implies that w, = —4/(2a) and

(A5)
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0? = A k(cothk + ay ) — As _ (k

2
. Ztw)|. (A6
*1+ 2a& cothk + aja;  \2 w) (A)

The choice of sign has no effect. Notice that w, is in-
dependent of wavenumber. The baroclinic model has
w, = &= 3(Vgo/q1 — Vqo/q-,). If the right-hand side
of (A6) is positive, w; is the growth or decay rate; oth-
erwise, the two modes are neutral for the given wave-
number. Growth rates for symmetric configurations
and different values of v, /v, are graphed as a function
of wavenumber in Fig. 4. Growth rates for several
asymmetric cases with one of the ratios fixed at 0.15
are graphed in Fig. 11. Notice the appearance of a long-
wave cutoff in the asymmetric cases (y_; ¥ v, and w,
# 0). In the small-k limit, the right-hand side of (A6)
is approximately Bk — w?, where B = (4
— A, 4_))/(2a). A long-wave cutoff therefore appears
near k = w2/ B. The stabilization at small wavenumber
is similar to the effect of a planetary vorticity gradient
on long Rossby waves.

The steering level, say y = y;, is defined by #(y;)
= ¢,, where ¢, is the real part of the phase speed. Hence,
¥, = w,/ k in the unstable modes. In both types of mod-
els, the steering level for unstable modes is at middepth
in symmetric cases (since w, = 0 when y_; = v,), but
otherwise is closer to the interface that has the smaller
contrast in vorticity or PV (wherever v /v, is larger).
In Eady’s (1949) example with infinite lower-level PV
(v-: = 0) and finite upper-level PV, the unstable modes
move in the direction of the upper-level flow. The
steering level shifts toward the interface with the smaller
PV jump because the propagation of edge waves against
the mean flow is weaker there.

APPENDIX B
Outline of Numerical Solution Procedure

Here we describe our method for solving the elliptic
problems (8) and (9). Since gy, is a coefficient in the
equations and may be a function of X, we use finite
differences in both the horizontal and the vertical. We
use the direct elliptic solver (called “EVP”") described
by Roache (1976). Since the differencing is straight-
forward, we concentrate here on the implementation
of the open boundary condition at the top and bottom
of the computational domain.

If we define a variable A(X, Z) such that d4/4X
= X, then (8) and (9) are of the same form, namely,

qsgAXX + AZZ = F’ (Bl)

where the variables are nondimensional. The xyb-co-
ordinate problems (15) and (16) also have this form
if we define d4/dy = § and identify y with Z. We
assume that the forcing F(X, Z) vanishes outside the
computational boundaries, say in |Z | > Z,. This is
exactly true of (8) and (15) if the boundaries are placed
far enough outside Z = +'4, since we are using discrete
distributions of g,,. However, since the forcing in (9)
and (16) is not exactly zero at the boundaries, an ex-
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ponentially small error is introduced when solvmg for
the ageostrophic streamfunction.

With the assumption about F(X, Z), the solution
of (Bl Yin |Z| > Zycanbe represented by the Fourier
series

M
2 An(Zy) exp(iknX,)

m=~M

A(X,, Z) =

X exp(~alkm(Z — Z,)}), (B2)

where 4(Z ) is the discrete transform of 4 over the 2 M
grid pointsin X and a = Vq_t; The discrete wavenum-
bers are k,, = mn /L, where L is half the width of the
periodic domain. Choosing the outwardly damped
vertical structure for each horizontal scale ensures
boundedness at infinity.

A linear relation between the solution at Z = Z, and

the solution at Z = Z), (one grid point away) is obtained
by evaluating (B2) at Z = Z ;. With the help of the
convolution theorem, the result is expressed as a sum
over the grid points X,,,

M
A(Xn, Zh) = 2 A(Xpm, Zp)B(Xm — X,)AX;
m=~M
1 (1= exp[(M + 1)ki(iX — aAZ)]
B =1 Re[ 1 — explki(iX — aAZ)] ]

(B3)

where AX = L/Mand AZ = |Z, — Z},|. The expres-
sion named B(X) is the inverse transform of
exp(—alk,|AZ). Typically, M is large enough to make
the second term in the numerator negligible, and one
finds that

2 k; k,
X, [smh( 3 aAZ) exp( > aAZ)
k
. 2__[
+sm(2X)]
4 ki in2f &t .
kz[ nh(zaAZ)+sm(2X)]

(B4)
If L is big enough that | X|/L < 1 in the region of the

forcing, and «AZ/ L is also small, one has the further
approximation

1
B(X) ~ ~

1 alAZ
B(X) ~ = =3, (BS)

7w (aAZ)? +

which is the continuous inverse transform of
exp(—a|k|AZ). Once B is evaluated for discrete val-
ues of X, the linear relation (B3) can be incorporated
into the direct solver as a boundary condition. Notice
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that the limit « — 0 yields B — §(X) (Dirac delta).
This limit corresponds to the Neumann boundary
condition, A(X, Z}) = A(X, Z;). The limit & = o©
yields the Dirichlet condition, A(X, Z}) =0
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