Past and Future Tropical Cyclone Activity

Gabriel A. Vecchi
NOAA/Geophysical Fluid Dynamics Laboratory
Princeton, NJ 08540

• What is a tropical cyclone?
• What is cyclone “activity”? Why?
• How has activity changed in the past? Why?
• How do we expect it to change in future? Why?
Miami After Hurricane Andrew

Source: wikimedia.org
North Atlantic tropical cyclones

- Recent increase in activity
 - Including extreme 2004-2005 seasons
- Why? Implications for future?
Key concepts

• Established vs. Developing understanding
 – Multiple factors impact hurricanes
 – Observational uncertainties
 – Pushing the limits of our theory and computers

• False choice: global warming OR climate variability

• Not about one storm or one season (“Katrina effect”).
• How do we develop our understanding?
 – Observations
 – Theoretical understanding
 – Numerical Modeling

• As we learn more the interpretation of total evidence changes: this is how science works

• Interpretations of sum of evidence can differ between scientists: not a “debate” - an ongoing inquiry
Tropical cyclones

- Tropical cyclone not a big tornado
- Tropical cyclone, hurricane and typhoon same phenomenon, different location.

Hurricane Isabel (2003)
Atlantic Ocean
[source: wikimedia.org]

Cyclone Gonu (2007)
North Indian Ocean
[source: wikimedia.org]

Cyclone Tokage (2004)
Northwest Pacific Ocean
[source: NASA]
Saffir-Simpson Hurricane Scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Wind speed (mph)</th>
<th>Storm surge (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(km/h)</td>
<td>(m)</td>
</tr>
<tr>
<td>5</td>
<td>≥156 (≥250)</td>
<td>>18 (>5.5)</td>
</tr>
<tr>
<td>4</td>
<td>131–155 (210–249)</td>
<td>13–18 (4.0–5.5)</td>
</tr>
<tr>
<td>3</td>
<td>111–130 (178–209)</td>
<td>9–12 (2.7–3.7)</td>
</tr>
<tr>
<td>2</td>
<td>96–110 (154–177)</td>
<td>6–8 (1.8–2.4)</td>
</tr>
<tr>
<td>1</td>
<td>74–95 (119–153)</td>
<td>4–5 (1.2–1.5)</td>
</tr>
</tbody>
</table>

Additional classifications

<table>
<thead>
<tr>
<th></th>
<th>Tropical storm</th>
<th>Tropical depression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39–73 (63–117)</td>
<td>0–3 (0–0.9)</td>
</tr>
<tr>
<td></td>
<td>0–38 (0–62)</td>
<td>0</td>
</tr>
</tbody>
</table>

source: NOAA
Theory of Maximum Potential Intensity

Idealized Carnot Engine in a Tropical Cyclone

Potential Intensity = “Fuel” * “Efficiency”

“Fuel” increases as ocean warms
“Efficiency” increases as ocean warms, decreases as upper atmosphere warms

Warm water necessary for storm formation.

But warm water not enough, e.g. cyclones need a “calm” environment (without strong “wind shear” to disrupt them)
It’s not all local: El Niño events are associated with fewer Atlantic hurricanes, but warmer Atlantic
Measure of Activity
Measure of Activity

- Which measure?
 - Hurricane count
 - Landfalling storm count
 - Extremes in intensity
 - Shifts in average intensity
 - Sum of intensity

- Must balance demand with current understanding
 - Obs, models and theory limit.

- Differences must be communicated and understood
How can we \textbf{know} what hurricanes did in the past?
How can we *estimate* what hurricanes did in the past?

- Weather maps and reports
- Satellites
- Historical records (newspapers, etc)
- Sediments in marshes
- Etc.
Can we be sure the long-term increase is real? Observational methods have changed with time….

Vecchi and Knutson (2008)
Characteristics of recorded storms exhibit strong secular changes, e.g., fraction of storms hitting land

Estimating Atlantic tropical storm counts using historical document. Number of hurricanes and TS passing over Antilles.

Explored historical newspaper archives in various islands in the Antilles.

Source: Cenoweth and Divine et al (2008, G3)
Greenhouse gases not only factor in past (or future) TC activity

Models estimate that for Atlantic TC intensity over 20th century:

- Increase from GHGs
- But that non-GHG forcing should have led to a decrease, with a minimum in 1970s-1980s.
 - Likely due to “aerosols” – particulate pollution, more pollution before 1970s, less after.

Villarini and Vecchi (2012, J. Climate)
How do we expect hurricane activity to change?
Can global climate models give guidance about changes in Atlantic storm activity?
But, current computing power limits ability of global climate models to represent hurricanes.

Hurricane Rita (2005): orange grid is representative of current *global* climate model resolution.

Size of grid limited by power of computers.
Nonetheless, tropical storms are affected by \textit{large-scale} conditions that today’s climate models \textit{can} represent.

Factors that \textit{favor} storm development and intensification:

- Warm ocean surface
- Cool upper atmosphere
- Low vertical wind shear
- Moist middle atmosphere
- etc.

Vertical wind shear

Help define potential intensity

cf. Emanuel, Holland
From increasing greenhouse gases, we expect tropics to warm over current century.

Projections of Surface Temperatures

Models also indicate that upper atmosphere should warm much more than the surface.

What is net effect?

IPCC-AR(2007)
Projected 21st Century Changes in Vertical Wind Shear

Average of 18 models, Jun-Nov

Over swath of tropical Atlantic and East Pacific, increased wind-shear.

What is net effect of increased potential intensity and wind shear?

Vecchi and Soden (2007, GRL)
“Downscale” Climate Model Projections With High-Resolution or Statistical Models

Global Climate Models -> High-resolution Model

1) Global climate model projects large-scale climate changes from changes in greenhouse gases and aerosols.

2) High-res model projects change in hurricane counts from climate model output.

Large-scale TS Frequency
One Temperature Predictor of Atlantic Hurricane Activity

Observed Activity
Absolute Atlantic Temperature

Vecchi, Swanson and Soden (2008, Science)
Two Temperature Predictors of Atlantic Hurricane Activity

Vecchi, Swanson and Soden (2008, Science)
Two Statistical Projections of Atlantic Hurricane Activity

Observed Activity
Absolute Atlantic Temperature

Observed Activity Relative Atlantic Temperature

Vecchi, Swanson and Soden (2008, Science)
High-Resolution Comprehensive models

Assess TC sensitivity to climate change in a physically-consistent manner

GFDL regional model simulation.

Knutson et al (2007, BAMS)

Models ranging in 100km to 18km resolution.

GFDL global model simulation.

Zhao, Held, Lin and Vecchi (2009, J. Climate)
...Add Dynamical Projections of Atlantic Hurricane Activity

Observed Activity
Absolute Atlantic Temperature

Dynamical Model Projections

Observed Activity
Relative Atlantic Temperature

Vecchi, Swanson and Soden (2008, Science)
Response of TC frequency in single 50km global atmospheric model forced by four climate projections for 21st century

Regional increase/decrease much larger than global-mean.

Pattern depends on details of ocean temperature change.

Sensitivity of response seen in many studies

* e.g., Emanuel et al. 2008, Knutson et al. 2008, Sugi et al. 2010, Villarini et al. 2011, etc.
Dynamical Projections of Atl. Hurricanes for end of 21st Century

Adapted from Zhao et al. (2009, J. Clim.) and Held et al. (2012, in prep)

Using GFDL-HiRAM
GFDL-CM3 indicates aerosols key for NA TS projections (projected aerosol clearing -> more storms)

Villarini and Vecchi (2012, Nature C.C.)
Temperature “threshold” of TC formation increases with global warming

Ocean temperature when cyclone forms:

Present climate

Warmed climate
Three-step assessment of impact of global warming on strongest storms

1) Global climate model projects large-scale climate changes from changes in greenhouse gases and aerosols.

2) Regional model projects change in hurricane counts from climate model output.

3) Hurricane model projects change in most intense hurricanes from regional model output.
Frequency of weakest storm projected to decrease. Frequency of strongest storms may increase.

We expect continued variation of tropical storm frequency.

Projected Atlantic Tropical Storm Frequency

(statistical downscaling of GFDL-CM2.1)

2x CO₂ by 2100

Stable CO₂ by 2000
My current interpretation of evidence

- Observations: can’t reject possibility of no change in frequency
 - Data issues and short records
 - We will never know how many storms we didn’t see, or what they were like. We can only estimate it.

- Multiple factors affect change in hurricane activity:
 - Pattern of temperature changes is key.

- Projected changes depend on measure chosen, e.g.:
 - Atlantic TC Frequency: small change, possible decrease
 - Atlantic TC Intensity: projected increase

- Year-to-year and decade-to-decade variations will still exist.

- Increased coastal population and wealth: increased vulnerability

- Sea level rise: same storm greater potential impact.

- This is a topic of vigorous scientific inquiry.

Gabriel.A.Vecchi@noaa.gov

www.gfdl.noaa.gov
Key concepts

• Established vs. Developing understanding
 – Multiple factors impact hurricanes
 – Observational uncertainties
 – Pushing the limits of our theory and computers

• False choice: global warming OR climate variability

• Not about one storm or one season (“Katrina effect”).

• How do we develop our understanding?
 – Observations
 – Theoretical understanding
 – Numerical Modeling

• As we learn more the interpretation of total evidence changes: this is how science works

• Interpretations of sum of evidence can differ between scientists: not a “debate” - an ongoing inquiry