A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

Larry W. Horowitz
Stacy Walters
Denise L. Mauzerall
Louisa K. Emmons
Phil J. Rasch
Claire Granier
Xuexi Tie
Jean-François Lamarque
Martin Schultz
Guy P. Brasseur

to be submitted to Journal of Geophysical Research
DRAFT -- April 14, 2001
http://acd.ucar.edu/~larryh/mozart.html

MOZART Workshop, NCAR
April 16, 2001
MOZART-2

• Model description
 - Overview
 - Recent modifications

• Comparison with observations

• O₃ budget
MOZART-2

Model resolution: 2.8° latitude × 2.8° longitude (≈T42), 20 min timestep, 34 vertical layers (hybrid), surface to ~35 km (5 mb)

Meteorology: Winds, T, P, humidity, surface fluxes
 From MACCM-3 (truncated to 34 layers), every 6 hours

Surface emissions: NO_x (fossil fuel, biomass burning, soils)
 CO, non-methane hydrocarbons (FF, vegetation, biomass burning, oceans)

Lightning: NO_x source based on convection [Price et al., 1997; Pickering et al., 1998]

Photochemistry: 58 chemical species, 132 kinetic + 31 photolysis reactions
 Photolysis rates computed from lookup table

Advection: Flux-form semi-Lagrangian scheme [Lin and Rood, 1996]

Convection: Rediagnosed from MACCM-3 data using Hack [1994] and Zhang and MacFarlane [1995] schemes

Boundary layer diffusion: Based on Holtslag and Boville [1993]

Dry deposition: Deposition velocities computed with Wesely [1989] scheme, using NCEP meteorology and DeFries and Townshend [1994] vegetation map

Wet deposition: Based on Giorgi and Chameides [1985]
MOZART-2

- Recent modifications
 - Emissions
 - Dry deposition velocities
 - New isoprene scheme
 - Lightning NO\textsubscript{x}
 - “Flexible” architecture version
 - Updated reaction rates
 - Improved O\textsubscript{3} upper BC
MOZART-2

CO Emissions

Industrial CO \(10^{10} \text{ molec cm}^{-2} \text{ s}^{-1}\)

Biomass burning CO \(10^{10} \text{ molec cm}^{-2} \text{ s}^{-1}\)

Soil CO \(10^{10} \text{ molec cm}^{-2} \text{ s}^{-1}\)

Ocean CO \(10^{10} \text{ molec cm}^{-2} \text{ s}^{-1}\)
Acetone Emissions

MOZART-2

Industrial Acetone 10^{10} molec cm$^{-2}$ s$^{-1}$

Biomass burning Acetone 10^{10} molec cm$^{-2}$ s$^{-1}$

Biogenic Acetone 10^{10} molec cm$^{-2}$ s$^{-1}$

Ocean Acetone 10^{10} molec cm$^{-2}$ s$^{-1}$
MOZART-2

Deposition Velocities (July)
MOZART-2

Lightning NO_x
(Global Annual Total = 2.5 Tg y⁻¹)

JAN Gg N y⁻¹ APR Gg N y⁻¹

JUL Gg N y⁻¹ OCT Gg N y⁻¹

[Map images showing global distribution of Lightning NO_x emissions for different months]

0.01 0.1 0.3 1 2 5 10
MOZART-2

Emissions

<table>
<thead>
<tr>
<th>Species</th>
<th>Fossil fuel combustion</th>
<th>Biomass burning</th>
<th>Biogenic / Soil</th>
<th>Oceans</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO (TgN/y)</td>
<td>23.1</td>
<td>8.7</td>
<td>6.6</td>
<td>0</td>
<td>38.4</td>
</tr>
<tr>
<td>CO (Tg/y)</td>
<td>306.9</td>
<td>711.2</td>
<td>181.0</td>
<td>2.0</td>
<td>1201.1</td>
</tr>
<tr>
<td>C<sub>2</sub>H<sub>6</sub> (TgC/y)</td>
<td>6.4</td>
<td>4.5</td>
<td>0.8</td>
<td>0.1</td>
<td>11.7</td>
</tr>
<tr>
<td>C<sub>3</sub>H<sub>8</sub> (TgC/y)</td>
<td>10.0</td>
<td>2.2</td>
<td>1.6</td>
<td>0.1</td>
<td>14.00</td>
</tr>
<tr>
<td>C<sub>2</sub>H<sub>4</sub> (TgC/y)</td>
<td>2.0</td>
<td>12.3</td>
<td>4.3</td>
<td>2.1</td>
<td>20.7</td>
</tr>
<tr>
<td>C<sub>3</sub>H<sub>6</sub> (TgC/y)</td>
<td>0.9</td>
<td>5.6</td>
<td>0.9</td>
<td>2.5</td>
<td>9.8</td>
</tr>
<tr>
<td>C<sub>4</sub>H<sub>10</sub> (TgC/y)</td>
<td>22.2</td>
<td>23.0</td>
<td>21.4</td>
<td>6.3</td>
<td>72.9</td>
</tr>
<tr>
<td>CH<sub>3</sub>COCH<sub>3</sub> (Tg/y)</td>
<td>1.0</td>
<td>16.1</td>
<td>10.2</td>
<td>9.9</td>
<td>37.3</td>
</tr>
<tr>
<td>ISOP (TgC/y)</td>
<td>0</td>
<td>0</td>
<td>299.0</td>
<td>0</td>
<td>299.0</td>
</tr>
<tr>
<td>C<sub>10</sub>H<sub>16</sub> (TgC/y)</td>
<td>0</td>
<td>0</td>
<td>129.1</td>
<td>0</td>
<td>129.1</td>
</tr>
<tr>
<td>CH<sub>4</sub> (Tg/y)</td>
<td>95.0</td>
<td>64.3</td>
<td>145.7</td>
<td>11.3</td>
<td>467.9</td>
</tr>
<tr>
<td>N<sub>2</sub>O (Tg/y)</td>
<td>5.0</td>
<td>1.7</td>
<td>20.7</td>
<td>11.3</td>
<td>38.7</td>
</tr>
<tr>
<td>H<sub>2</sub> (Tg/y)</td>
<td>13.5</td>
<td>14.0</td>
<td>5.3</td>
<td>7.8</td>
<td>40.6</td>
</tr>
</tbody>
</table>
MOZART-2

Emissions (new, old)

<table>
<thead>
<tr>
<th>Species</th>
<th>Fossil fuel combustion</th>
<th>Biomass burning</th>
<th>Biogenic / Soil</th>
<th>Oceans</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO (TgN/y)</td>
<td>23.1</td>
<td>8.7</td>
<td>6.6</td>
<td>0</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td>39.5</td>
</tr>
<tr>
<td>CO (Tg/y)</td>
<td>306.9</td>
<td>711.2</td>
<td>181.0</td>
<td>2.0</td>
<td>1201.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>858.4</td>
<td></td>
<td>20.1</td>
<td>1353.8</td>
</tr>
<tr>
<td>C<sub>2</sub>H<sub>6</sub> (TgC/y)</td>
<td>6.4</td>
<td>4.5</td>
<td>0.8</td>
<td>0.1</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td></td>
<td>0.8</td>
<td>10.2</td>
</tr>
<tr>
<td>C<sub>3</sub>H<sub>8</sub> (TgC/y)</td>
<td>10.0</td>
<td>2.2</td>
<td>1.6</td>
<td>0.1</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
<td>1.1</td>
<td>10.2</td>
</tr>
<tr>
<td>C<sub>2</sub>H<sub>4</sub> (TgC/y)</td>
<td>2.0</td>
<td>12.3</td>
<td>4.3</td>
<td>2.1</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.1</td>
<td></td>
<td>8.4</td>
<td>28.7</td>
</tr>
<tr>
<td>C<sub>3</sub>H<sub>6</sub> (TgC/y)</td>
<td>0.9</td>
<td>5.6</td>
<td>0.9</td>
<td>2.5</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.4</td>
<td></td>
<td>10.2</td>
<td>18.3</td>
</tr>
<tr>
<td>C<sub>4</sub>H<sub>10</sub> (TgC/y)</td>
<td>22.2</td>
<td>23.0</td>
<td>21.4</td>
<td>6.3</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.0</td>
<td></td>
<td>63.2</td>
<td>186.7</td>
</tr>
<tr>
<td>Acetone (Tg/y)</td>
<td>1.0</td>
<td>16.1</td>
<td>10.2</td>
<td>9.9</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.1</td>
<td></td>
<td>0</td>
<td>26.1</td>
</tr>
<tr>
<td>Isoprene (TgC/y)</td>
<td>0</td>
<td>0</td>
<td>299.0</td>
<td>0</td>
<td>299.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500.3</td>
<td></td>
<td>500.3</td>
</tr>
</tbody>
</table>
MOZART-2

• Comparison with observations
 - Ozonesondes
 - CMDL (CO)
 - Aircraft measurements
 → DIAL O_3
 → CO
 → Acetone
 → others?
SUMMARY

• O_3, NO_x, CO, NMHCs, peroxides
 - very good agreement with obs

• PAN, CH$_2$O
 - good agreement at most locations

• HNO$_3$, acetone
 - significant disagreement at some locations
Ozone budget

<table>
<thead>
<tr>
<th>Process</th>
<th>Global</th>
<th>Northern Hemisphere</th>
<th>Southern Hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influx from stratosphere(a)</td>
<td>(409^b)</td>
<td>267</td>
<td>142</td>
</tr>
<tr>
<td>Photochemical production</td>
<td>4671</td>
<td>2750</td>
<td>1921</td>
</tr>
<tr>
<td>Photochemical loss</td>
<td>-4238</td>
<td>-2463</td>
<td>-1775</td>
</tr>
<tr>
<td>Dry deposition</td>
<td>-847</td>
<td>-557</td>
<td>-290</td>
</tr>
</tbody>
</table>

For this budget, the tropopause is defined as the hybrid model level interface corresponding to approximately 100 hPa in the tropics (30°S-30°N) and 250hPa in the extratropics.

\(a\). Includes advection, pressure consistency correction, and convection and vertical diffusion.

\(b\). This term consists of advection (310 Tg/y), pressure consistency correction (91 Tg/y), and convection and vertical diffusion (8 Tg/y).
Ozone fluxes (Tg y$^{-1}$)

Stratosphere

Troposphere

\[? = 91 \]

\[P = 4671 \]
\[L = 4238 \]

90°S Eq 90°N