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BAasics OF MOM4

The purpose of this part of the MOM4 Guide is to familiarize the reader with
the basics of MOM4. There are two chapters, with the first providing an overview
of MOM4 and its relation to other versions of MOM. The second chapter provides
details of the computational aspects of MOM4. This part of the book should satisfy
those readers most interested in a quick overview and summary of MOM.
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The Modular Ocean Model (MOM) is a numerical representation of the ocean’s
hydrostatic primitive equations. It is designed primarily as a tool for studying the
ocean climate system. The purpose of this chapter is to introduce the Modular
Ocean Model (MOM) and to provide an overview of this document. Information
about how to download and run MOM4 can be found at
http:/ /nomads.gfdl.noaa.gov /.
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1.1 What is MOM?

The Modular Ocean Model (MOM) is a numerical representation of the ocean’s
hydrostatic primitive equations. It is designed primarily as a tool for studying the
ocean climate system. The model is developed and supported by researchers at
NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), with contributions also
provided by researchers worldwide. The model is freely available via
www.gfdl.noaa.gov/~fms

MOM evolved from numerical ocean models developed in the 1960’s-1980’s
by Kirk Bryan and Mike Cox at GFDL. Most notably, the first internationally re-
leased and supported primitive equation ocean model was developed by Mike Cox
([ ]). It cannot be emphasized enough how revolutionary it was in 1984
to freely release, support, and document code for use in numerical ocean climate
modeling. The Cox-code provided scientists with a powerful tool to investigate
basic and applied questions about the ocean and its interactions with other compo-
nents of the climate system. Previously, rational investigations of such questions by
most scientists were limited to restrictive idealized models and analytical methods.
Quite simply, the Cox-code started what has today become a right-of-passage for
every high-end numerical model of dynamical earth systems.

Upon the untimely passing of Mike Cox in 1990, Ron Pacanowski, Keith Dixon,

and Tony Rosati rewrote the Cox code with an eye on new ideas of modular pro-
gramming in Fortran 77. The result was the first version of MOM ([
Version 2 of MOM (] ]) introduced the memory window idea,
which was a generalization of the vertical-longitudinal slab approach used in the
Cox-code and MOMI1. Both of these methods were driven by the desires of mod-
elers to run large experiments on machines with relatively small memories. The
memory window provided enhanced flexibility to incorporate higher order numer-
ics, whereas slabs used in the Cox-code and MOMI1 restricted the numerics to sec-
ond order. MOM3 ([ ]) even more fully exploited the
memory window with a substantial number of physics and numerics options.

The Cox-code and each version of MOM came with a manual. Besides describ-
ing the elements of the code, these manuals aimed to provide transparency to the
rationale underlying the model’s numerics. Without such, the model could in many
ways present itself as a black box, thus greatly hindering its utility to the researcher.
This philosophy of documentation saw its most significant realization in the MOM3
Manual, which reaches to 680 pages. The present document is written with this
philosophy in mind, yet allows itself to rely somewhat on details provided in the
previous manuals as well as theoretical discussions given by [ I

The most recent version of MOM is version 4. The origins of MOM4 date back
to a transition from vector to parallel computers at GFDL, starting near 1999. Other
models successfully made the transition some years earlier (e.g., The Los Alamos
Parallel Ocean Program (POP) and the OCCAM model from Southampton, UK).
New computer architectures generally allow far more memory than previously
available, thus removing many of the reasons for the slabs and memory window
approaches used in earlier versions of MOM. Hence, we concluded that the mem-
ory window should be jettisoned in favor of a straightforward horizontal 2D do-
main decomposition. Thus began the project to redesign MOM for use on parallel
machines.
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1.2 Release of MOMA4.0 October 2003

As may be anticipated, when physical scientists aim to rewrite code based on soft-
ware engineering motivations, more than software issues are addressed. During
the writing of MOM4, numerous algorithmic issues were also addressed, with many
physical parameterizations, dynamical schemes, diagnostics, etc., being rewritten
and/or added. Hence, the naively simple task of rewriting MOM3 into MOM4 has
only now matured, after some five years of undertaking.

MOM4 was released twice to the public as a beta-code during the middle of
2002. A third beta release was held September-October, 2004, with only a few ex-
perienced users participating. Significant input from users throughout the MOM
community has assisted in the development of the code. Such evolution of the code
will clearly continue. Nonetheless, the present architecture and overall structure of
MOM4 appears robust enough that we are soliciting general usage from the ocean
modeling community, without the reservations attendant with a beta-release. That
is, we sanction the present code as a full release of MOM4.0.

1.3 MOM4 documentation

The main goal of this document is to provide the ocean climate modeler with a
guide to Version 4 of the Modular Ocean Model (MOM4). In particular, we address
the needs of the those picking up MOM4 and wishing to use the code and to under-
stand many of the numerical details of the code. There are three other documents
written in tandem with the present document:

e The MOM4 Users” Guide. This web-based document is available from the
MOM4-link at
http:/ /nomads.gfdl.noaa.gov/.
The MOM4 Users” Guide provides details necessary to download the source
code and run the model. Here you will also be able to register as a MOM4-
user.

e FUNDAMENTALS OF OCEAN CLIMATE MODELS by [ | presents
a theoretical foundation for ocean climate models, with MOM4 as one exam-
ple. It is here that a rationalization of the model equations and algorithms
are presented. This document will remain available on-line until Sometime
during the early part of 2004, at which time it will be published by Princeton
University Press.

e THE MOM3 MANUAL of [ ] provides a thor-
ough discussion of MOM3, some of which is relevant for MOM4.

1.4 Modeling frameworks

As the field of climate modeling grows, and the realism of numerical models im-
proves, the software engineering issues posed by high-end earth system models
increase in complexity. Additionally, the efficient use of rapidly changing computa-
tional platforms requires expertise beyond the traditional model developer. Hence,
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climate modelers have increased their collaboration with each other and with soft-
ware engineers and computational scientists. The aim of such collaborations is an
improved software infrastructure thus reducing the burden on any particular re-
searcher or group.

1.4.1 The GFDL Flexible Modeling System

To assist with the development of MOM4, we have employed much of the code
developed and supported at GFDL for use in all of its numerical models. This Flex-
ible Modeling System (FMS) is the result of many years (starting in force around
1997-1998) of re-thinking, re-structuring, and re-writing the previously disparate
research codes at GFDL. FMS is designed with the goal of producing code that is
simple to use, simple to understand, simple to modify, well documented, and sup-
ported by a sound base of scientists and engineers at GFDL and elsewhere.

In its broadest terms, FMS aims to remove computational barriers (e.g., code
structure and language, standards, scripts, units, I/O, etc.) between codes used
for the study of dynamical geophysical systems. This goal should not be mis-
taken as a call to unify or homogenize algorithms. Instead, it provides a common
software infrastructure inside of which various algorithms (e.g., different vertical
coordinate choices, dynamical cores, and/or physical parameterizations) coexist.
FMS also aims to provide a common superstructure (e.g., coupler, run-scripts, post-
processing) which allow the various models to communicate with one another, and
for the researcher to communicate with the model code and results.

If the broader climate modeling community can realize these rather idealistic,
and nontrivial, goals, then the choice to use a particular model code can be based
on the physical and numerical attributes of the code, instead of restrictions based
on code style or platform issues. The effort spear-headed by NASA’s Earth System
Modeling Framework (ESMF)
http:/ /www.esmf.ucar.edu)
aims for nothing less.

1.4.2 MOM4 within FMS

Participating within GFDL’s FMS allows for MOM4 to use numerous FMS modules.
The following represents a sample.

e time manager: keeps time and sets time dependent flags

e coupler and data_override: used to couple MOM4 to other component models
and/or datasets.

e [/0O: to read and write data

e initial and boundary data: regrids spherical fields to the generally non-spherical
ocean model grid

e grid and topography specification: sets model grid spacing and interpolates
spherical topography to the model grid

e parallelization tools: for passing messages across parallel processors


file:www.esmf.ucar.edu

1.5. SOME CHARACTERISTICS OF MOM4 19

e diagnostic manager: to register and send fields to be written to a file for later
analysis

e field manager: for organizing multiple tracers for use especially in biogeo-
chemistry studies.

Being part of FMS greatly frees up those interested in developing physical and
numerical algorithms to focus on just that, instead of also needing to become ex-
perts in computational platforms and various software engineering issues. It also
allows for efficient input from computational scientists and engineers since they
can more readily focus on computational issues. Finally, it allows us in the ocean
modeling community to play a role in establishing common software infrastruc-
tures and coding standards, such as the ESMF efforts mentioned previously.

The FMS infrastructure was first released to the public earl 2002, with further
releases following on a regular basis. Notably, MOM4 represents the first major
model code to be released within FMS. Full documentation of FMS can be found at
www.gfdl.noaa.gov.

It is here that the researcher will find information about how to download and run
MOM4.

1.4.3 MOM4 on the web

MOM4.0 is released via the GFDL-FMS web site. Originally it was planned that
it would be released via the open source site SourceForge. However, as we wish
to know more about who actually takes the code, it is necessary that we run a
SourceForge-like software locally at GFDL, where all code, documentation, and
bulletin boards are maintained. Note that as we aim to nurture the MOM and FMS
communities, we strongly encourage users to contact developers via one of the
email lists maintained at the FMS web site.

1.5 Some characteristics of MOM4

As with all previous versions of MOM, MOM4 discretizes the ocean’s hydrostatic
primitive equations on a fixed Eulerian grid, with the Arakawa B-grid defining the
horizontal arrangement of model fields. That is, the grid cells live on a lattice fixed
in space-time. Given that MOM4 remains a z-coordinate ocean model, it shares
much with its predecessors. However, there are some notable characteristics that
we highlight in this section.

1.5.1 Streamlining the options

MOMBS arguably contains everything but the proverbial kitchen sink. For example,
when building MOM3, we were uncertain what would be the most suitable external
mode solver for the needs of z-coordinate ocean climate modeling. Hence, we kept
all those ever having been implemented in earlier MOMSs. These methods included
the traditional rigid lid streamfunction of [ ], the rigid lid surface pres-
sure of | Jand [
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the implicit free surface of [ ], and the explicit free sur-
face of | Jand [
After investigations leading to the [

paper, it was concluded that the explicit free surface method is most suitable since
it allows for efficient use of parallel computers while rendering the model’s algo-
rithms physically and numerically sound and simple. Hence, there is only one ex-
ternal mode solver in MOM4, and it is a slight variant of the Griffies et al. method
detailed in [ ].

Other examples abound where numerous options were made available in MOM3
for physical parameterization schemes. Quite simply, MOM3 represented the end
of some ten years of research and experience with various approaches used in
MOM. Building up to that point required testing of numerous options prior to de-
ciding which ones to jettison. The advantage of this approach is that it allows for
ready examination of the many permutations and combinations leading to a well
tuned model. The disadvantage is that is leaves the inexperienced modeler with
little guidance since there are so many options.

In the development of MOM4, we attempted a balance between including mul-
tiple options and hard-line decisions about what would be supported and not sup-
ported. We hope that our choices will be suitable for a broad class of ocean climate
researchers.

1.5.2 Eliminating ifdefs

One of the most noticeable change between MOM3 and MOM4 is that MOM4
has no cpp preprocessor options associated with physical parameterizations, com-
monly known as ifdefs. There remains only a single ifdef associated with code op-
timization (Section 2.7). The proliferation of physics ifdefs in MOM3 presented the
user with a complex menagerie of logical structures (e.g., multiple and nested ifdefs)
to wade through in order to reveal the utilized Fortran code. A rough count of the
ifdefs available in MOMS3.1 came to something between 300 and 400 options, with
multiple permutations allowed! Furthermore, cpp pre-processor options cannot be
checked at compile time for typos. Locally, we experienced numerous occasions
where an ifdef was misspelled, yet the model continued to run using an undesired
piece of code. We suspect that other researchers have had similar unfortunate ex-
periences.

We have done a few things to replace ifdefs. Firstly, as mentioned in the previous
subsection, we made decisions to streamline the supported options. Supporting
one instead of five external mode solvers helped tremendously. Additionally, we
aimed to have the code flexible and simple so that researchers wishing to do some-
thing different will find coding their changes to be a trivial task. Hence, we left
out many smaller options that MOMS3 chose to include. Secondly, we introduced
Fortran if-tests in many places where ifdefs formerly lived. Doing so allows for the
Fortran compiler to detect typos, thus enhancing the quality control aspects of the
model.

Finally, where large chunks of physical parameterization code could be isolated,
we made Fortran modules out of the options. For example, if one wishes to use the
KPP vertical mixing scheme, then
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/mom4/ocean_param/mixing/vert/kpp/ocean_vert_mix_coeff.F90

should be compiled. If instead, one wishes the constant vertical diffusivity ap-
proach, then

/mom4/ocean_param/mixing/vert/const/ocean_vert_mix_coeff.F90

should be compiled. This approach effectively replaces the selection of major ifdef
options with a pointer within a shell script to a desired module. The downside to
this approach is that some code in the different modules is similar, and so there is
a modest increase in code maintenance. The upside is that it cleans up the logic in
the separate modules.

1.5.3 Key computational characteristics

We summarize here some of the computational characteristics of MOM4.

1.5.3.1 Computational aspects: overview

e Asdiscussed in Section 1.4, the computational framework (i.e., infrastructure
and superstructure) upon which MOM4 is based is that of the GFDL Flexible
Modeling System (FMS).

e All code is Fortran 90.

e There is only a single cpp-preprocessor option (i.e., i fdef) associated with the
static memory option (Section 2.7). Files which use this ifdef must have the
extension .F90, whereas files with no cpp-preprocessor options have a .f90
extension.

e 3D arrays are dimensioned (i, j, k) instead of the slab-like (i, k, j) structure
used in earlier MOMs. Consequently, there is no memory window or slabs. It
is essentially for these reasons, plus the increased elegance of Fortran 90, that
algorithm development and coding is far simpler with MOM4 than earlier
MOMs.

¢ 2D (latitudinal /longitudinal) horizontal domain decomposition is the model
standard of use on single or multiple parallel processors.

e Multiple tracers are managed using the FMS field manager that organizes tracer
names, fluxes, sources, initializations, restarts, advection schemes, etc. This
manager was written, in particular, to serve the needs of ocean biogeochem-
istry research, as well as for use by atmospheric chemists.

e The FMS diagnostic manager is used to register and send fields to output for
analysis. The diagnostic manager and asociated diagnostic table allows for
the trivial addition of a new field to be added to the suite of model diagnostics
available for an experiment. This manager has been found to be extremely
useful and powerful.

e 1/0 is generally written in NetCDF. This capability includes files for restarts,
boundary forcing, initialization, topography, grids, sponges, etc. Some native
format capabilities remain, but with less support by GFDL than NetCDF.
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1.5.3.2 Computational aspects: derived types

Motivated by the desire to use MOM4 for a broad range of applications, data flow
between the various modules has been streamlined through the use of derived type
structures available in F90. The use of derived types, for instance, eases the devel-
opment of ocean data assimilation systems using mom4, and faciliates generalized
managing of biogeochemical tracers. The 1 and beta2 releases of mom4 used very
few derived types. It is therefore useful to highlight some of their advantages.

User-friendliness - various inputs and outputs to MOM'’s routines are more
clearly defined and protected with the {90 intent attribute.

Maintainability - algorithmic changes requiring additional variables can be
easily imbedded within the type structures.

Enhanced modularity - fewer dependencies between the modules. This leads to
clarity within the code and easier development.

We provide details of the derived types used in MOM4.0 in Section 2.1.

1.5.4 Key numerical characteristics

Here we summarize some of the numerical aspects of MOM4.

The model uses generalized orthogonal horizontal coordinates, with spheri-
cal curvilinear coordinates a special case. We are supporting the “tripolar”
grid of [ ], as discussed in Chapter 4. Other locally orthogonal
grids should be readily usable with the MOM4 framework. Because of this
added functionality to simulate the Arctic, MOM4 only minimally supports a
polar filtering scheme for tracers.

Bottom topography is represented using the [
partial cells. The older “full cell” approach is available via a namelist in the
topography generation pre-processing module.

For the inviscid dynamics, time stepping is with the leap-frog and Robert-
Asselin time filter. The Euler forward or Euler backward “mixing” time step
used in earlier MOMs has been eliminated. The dissipative dynamics (e.g.,
friction and diffusion) remains forward, as required for numerical stability.

As a forward model, MOM4 is compatible with the most recent adjoint com-
piler of Ralf Giering. To fully exploit this compiler for research requires a
license agreement from Giering. See

http:/ /www.fastopt.de/ralf/

for more details.

There are numerous diagnostics for checking code integrity, such as energetic
consistency, tracer conservation, solution stability, etc.

Through FMS, there are a full suite of pre-processing modules available for
setting up idealized or realistic grid specification files, initial conditions, and
boundary conditions.
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1.5.5 Physical aspects

Here we summarize some of the physical aspects of mom4.

e Physical units are MKS.

e MOM4 employs the non-Boussinesq approach of [

Hence, the kinematics, dynamics, and physics are based on a mass conserv-
ing framework, instead of the traditional volume conserving Boussinesq ap-
proach. Notably, the non-Boussinesq simulations yield a more accurate prog-
nostic calculation of the model’s sea level, including the steric effects absent
in the Boussinesq models. The volume conserving Boussinesq option remains
available for comparison via a namelist. [ ] presents details and
rationale. For realistic global simulations where a full physical parameteriza-
tion suite is used, the non-Boussinesq simulations have been found to be only
some 2% to 3% slower.

e The external mode solver is a variant of the [
explicit free surface. Top model grid cells have time dependent volume, thus
allowing for conservative fresh water input. [ ] presents full de-
tails and rationale. There is no rigid-lid option in MOMA4.

e Neutral tracer diffusion is implemented according to [
Likewise, Gent-McWilliams ([ ,
stirring is implemented using the skew-diffusion method of [ I
Flow dependent diffusivities are dependent on the depth integrated Eady
growth rate and Rossby radius of deformation, as motivated by the ideas of
[ Jand [
[ ] presents full details and rationale.

e Two equations of state are available. The most accurate is that described
by [ ]. In par-
ticular, the model’s density is a function of the local potential temperature,
salinity, and pressure. Pressure used for this calculation is the time depen-
dent hydrostatic pressure arising from fluid above the point of interest, in-
cluding the atmospheric pressure and pressure within the ocean free surface
(see [ 1), and surface
pressure is computed using the local surface ocean density, not the constant
Boussinesq density p,. The second equation of state is a linearized equation
for use in idealized Boussinesq models. Here, density is equated to potential
density and is a linear function of potential temperature. Nonlinear and pres-
sure effects are ignored in the linear equation of state. Chapter 21 details the
MOM4 implementation.

e Vertical mixing schemes include the time-independent depth profile of [
the Richardson number dependent scheme of [
and the KPP scheme of [ ].

e Horizontal friction schemes include constant and grid dependent viscosity
schemes, as well as the Smagorinsky viscosity scheme implemented accord-
ing to [ ]. Laplacian and biharmonic operators are
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available. The anisotropic scheme of [

and [ ] has been implemented for both the Lapla-
cian and biharmonic friction operators, as has the associated Laplacian viscos-
ity used in the [

paper. [ ] presents full details and rationale. Finally, the meth-
ods of [ ] allow for horizontal friction to be computed as a de-

viation from an approximate barotropic maximum entropy state (see Chapter
24).

Tracer advection is available using 2nd, 4th, 6th order centered schemes ([

and the quicker scheme documented by [

as well as [ . The algorithms for the 4th and
6th order schemes assume constant grid spacing, thus simplifying their code
though compromising their accuracy on grids with large anisotropies. MOM4
also provides for two multi-dimensional flux limited schemes ported from the
MIT GCM. These schemes are monotonic and quite efficient.

A sigma diffusion scheme is available, whereby tracers are diffused along
topography, with enhanced diffusion when heavy parcels are above lighter
parcels. This scheme aims to provide an extra diffusive pathway for dense
water to flow off shelves, as well as to add mixing next to the bottom. It

is implemented according to the ideas of | ] and
[ ]. Their sigma advection piece has not been
coded, largely due to the recommendations of [ ]

who concluded that the diffusive piece was sufficient for many purposes.
Chapter 15 describes the MOM4 implementation.

The overflow scheme of [ ] has been implemented
in MOM4. This scheme has similar, yet complementary, characteristics rela-
tive to the [ ] scheme. Chapter 16 describes the
MOM4 implementation of [ ].

Tidal forcing from eight lunar and solar constituents has been incorporated
into the free surface module of MOM4. Chapter 23 describes the implemen-
tation.

An open boundary condition (OBC) has been implemented into MOM4 to
allow the model to be of use for regional studies. Chapter 22 describes the
implementation.

1.6 Reproducing older results using MOM4.0

During the development of MOM4.0, there were significant efforts made to verify
that results generated with older versions of MOM were consistent with the new
code. Numerous bugs were found in such re-engineering exercises. Notably, how-
ever, one should not expect to regenerate exactly the same results due to (1) changes
in operation order, (2) resolving bugs present in older codes, (3) algorithm changes
resulting from increased understanding of the physics, dynamics, and numerics.
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Nonetheless, for most cases, the overall qualitative behaviour of the solution should
remain identical. Indeed, if such is not the case, then please carefully document the
differences and provide input to the developers.

1.7 Planned ocean model development

During the 3-testing phase of the MOM4 development (middle 2002 to late 2003),
many parts of the code have undergone testing whereby outstanding known and
unknown bugs/features have been resolved. As always, even after the 3-testing
phase, we solicit your critical input to help solidify the model’s integrity and func-
tionality. This section outlines plans for future development with mom4 and even
longer term plans for momb5.

1.7.1 General requirements for code to be incorporated to mom4

As stated in Section 1.5.1, we aim to maintain a balance between multiple options
and hard-line decisions about what is and is not supported. If there are notable
omissions or problems that the researcher identifies, then we solicit your input,
both in words and code, to expand the utility and integrity of the code.

Given this invitation for contributions, note that we aim to maintain a sound
sense of modularity whereby added code minimally interacts with other parts of
the code. Notably, any added code must first pass the tests posed by the various
MOM4 test cases described in Section 2.10. Finally, patience with your contribu-
tions is greatly appreciated, as the authors of this guide, who represent the core
MOM developers, are scientists also trying to use MOM4 to address fundamental
ocean climate questions.

1.7.2 Algorithm development at GFDL starting from mom4

Differences within models of the same vertical coordinate can be large, depend-
ing on details of numerics, physics, and forcing. The climate modeling community
needs to clarify these differences and to reduce modeling artefacts based on out-
dated assumptions and methods. Additionally, it is crucial that future model de-
velopment reduce computational barriers between different models, so that model-
ers can easily test different approaches and run different models. That is, it should
be trivial for anyone familiar with one model, regardless the vertical coordinate, to
run any other model.

Although difficult to predict with certainty, it is anticipated that long term MOM
development will focus on a generalized vertical coordinate model with a likely
move to the Arakawa C-grid. The trend towards generalized vertical coordinates,
though motivated theoretically, may be frought with unforeseen practical difficul-
ties tempering the theoretical arguments. Hence, it is necessary to garner the state-
of-the-art within each model framework to gauge progress with the more sophis-
ticated generalized models. This mandate motivates our development with the
z-coordinate MOM4.

Here, we identify some near-term development paths that are being investi-
gated at GFDL, starting from MOM4. They represent steps along the way towards
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more generalized time stepping and vertical coordinate capabilities. Much of this
development is inspired by work with the MITgcm.

e The leap-frog time stepping scheme has been the traditional approach for
time stepping the inviscid dynamics in MOM. Much of the code structure
assumes the leap-frog scheme, and such restricts ones ability to investigate
the utility of alternative approaches. The main problem with the leap-frog
scheme, at least for climate uses, is the inability to construct a discretely exact
conservation principle for tracers (e.g., [
and Chapter 7). This scheme can also exhibit substantial time-domain noise,
even when using the Robert-Asselin filter. Future development aims to re-
move the fundamental nature of the three-time level leap-frog scheme in MOM,
so to allow testing of alternative methods.

e MOM has always been discretized using a B-grid. With grid resolution in-
creasing, there are arguably some reasons for using the C-grid. In particular,
the C-grid provides far more flexibility in representing the complex topogra-
phy/geometry of an ocean basin since it allows for flow through single tracer
grid point channels. Work is planned to allow future GFDL models to use
either the B or C grids.

e MOM has always been a z-coordinate model. Recent advances based on the
isomorphism between depth and pressure suggest that minimal changes to
the dynamical kernal are needed to use sigma, eta, or pressure as the vertical
coordinate (e.g., [ ]and
[ ). Such work is planned for
future development.

1.7.3 Concerning a committment to model development

Ocean climate models are not conceived one year, to be then publicly released and
supported the next. Instead, they take years of creative passion, with a near infi-
nite amount of obsession to details, from numbers of people. Even to move from
MOM3 to MOM4, a move that did not involve fundamental numerical or physical
algorithm changes, took roughly four to five years of steady research and develop-
ment.

It is only through patience and persistence that an ocean model is successfully
taken from its initial vision phase, to its prototype phase, and then onto its public
release phase. Furthermore, public release in no way represents the final step. In-
deed, it is perhaps the most difficult step as it exposes the previously insular model
code to the critical eyes of multiple researchers with numerous needs and experi-
ences.

In short, the construction of an ocean model requires a marriage of research with
development, with each phase requiring an unpredictable amount of time to debate
and explore various avenues. Allowing such time requires dedication and support
from funding agencies and managers. In its absence, ocean model development is
handicapped and the integrity of the simulations compromised. NOAA and GFDL
have provided dedication and support for long-term research and development in
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the past. Continuance is necessary as we embark upon model development projects
into the 21st century thus taking us far beyond MOM4.
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The purpose of this chapter is to detail some computational aspects of MOM4.0.
It is meant to be a quick-start guide for those wishing minimal conceptual details
but instead wish to start running the model code as quickly as possible.

2.1 Derived types used in MOM4.0

As discussed in Section 1.5.3.2, MOM4.0 makes use of Fortran90 derived type struc-
tures. In particular, the code is organized around several derived types that com-
bine logically related fields. Top-level ocean interfaces accept the following derived

types:

e grid_type - grid locations, distances, metric terms and coriolis factors
e domain_type - local and global indices, mpp_domains flags and domain2d type.
e time_type - timestep counter, initial time, current time and time level indices.

e advective_velocity_type - horizontal and vertical advective velocities for tracers
and momentum.

e velocity_type - horizonal velocity and density weighted velocity for non-boussinesq

calculations.

e tracer_prog_type - tracer concentration, surface and bottom fluxes and tracer
metadata including name and units. These are tracers that evolve via the
tracer equation.

e tracer_diag_type - tracer concentration and tracer metadata including name and
units. These are tracers that are diagnosed and so possess only a single time
level.

o external_mode_type - quantities related to the external mode, including surface
height and height tendency and freesurface forcing.

e density_type - density quantities, including in-situ pressure and non-boussinesq
quantities.

e ocean_data_type - Surface quantities for communication with fms coupler.
e ice_ocean_boundary_type - surface flux quantities returned from the coupler.

Objects that are not contained in derived types include certain fields not associ-
ated with the ocean model as well as certain constants. Time independent objects
not contained in a derived type can be accessed by a module via the “use only”
statement. Time dependent objects are generally passed through subroutine inter-
faces. Maintaining this philosophy has reduced the head-aches associated with FO0
predessor cycles (i.e., self-referential loops).
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2.2 Code organization

We provide here the general flow of mom4.0 where we assume use of the gener-
alaized coupler to drive the model. When using this coupler, the ocean model is
run as one of any number of component models, even when the component mod-
els are null or dummy models. Using the coupler, even for simplified ocean-only
experiments, can be a useful way to familiarize oneself with how to run a coupled
model, and so it is recommended that one use the coupler when feasible. However,
for those cases with idealized boundary conditions, it may be desirable to focus
just on the ocean relevant issues. For this case, the driver ocean_solo.F90 can be
used instead. This module is quite similar to the coupler, but omits some of the
unnecessary calls. Use of ocean_solo.F90 may also be warranted when one has an
alternative coupler to use, such as one arising from the European PRISM effort.

Note that the following list of steps may be a bit out of date due to the introduc-
tion of some added physics modules subsequent to the writing of this document.
Regardless, the general ideas are relevant and should give the reader an overall
sense for the code flow.

Coupler_main (driver)

+initialize fms infrastructure

+initialize component models (atmos/ice/land/ocean)
+initialize flux exchange grid
+begin coupled loop

+
+
+

+

calculate flux from ocean to ice

udpate ice surface for atmospheric fast physics
time-step atmos/ice/land on ‘‘fast’’ physics timestep
and perform boundary layer computations

update
calculate flux between ice/ocean
timestep ocean (update_ocean_model)

‘‘slow’’ ice and land processes (dynamics, transport, mass)

++derive flux quantities for ocean (ocean_sfc_mod:get_ocean_fluxes)

++calculate restoring fluxes or adjustments (ocean_sbc_mod:flux_adjust)

++calculate bottom boundary fluxes
(ocean_bbc_mod:get_ocean_bbc)

++calculate ocean density quantities
(ocean_density_mod:update_ocean_density)

++calculate ocean advection fields
(ocean_advection_velocity_mod:ocean_advection_velocity)

++calculate surface height tendency
(ocean_freesurf_mod:surface_height_tendency)

++calculate vertical mixing coefficients
(ocean_vert_mix_coeff_mod:vertical_mix_coeff)

++calculate thickness weighted tracer source from neutral physics
(ocean_neutral_physics_mod:neutral_physics)
add update vertical diffusion coefficient

++calculate thickness weighted temperature tendency from shortwave
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(ocean_shortwave_pen_mod:sw_source)
++calculate tracer tendency due to sponges
(ocean_sponge_mod:sponge_tracer_source)
++calculate thickness weighted tracer tendency from cross-land mixing
(ocean_xlandmix_mod:xlandmix)
++calculate thickness weighted tracer tendency due to river discharge
(ocean_rivermix_mod:rivermix)
++calculate thickness weighted tracer tendency due to sigma diffusion
(ocean_sigma_diffuse_mod:sigma_diffusion)
++update tracer(ocean_tracer_mod:update_ocean_tracer)
++calculate polarfiltered version of tracers
(polar_filter_tracers_mod:polar_filter_tracers)
++calculate anomalous density using updated tracer
(ocean_density_mod:calc_rho_tilde)
++calculate density-weighted velocity
(for non-boussinesq - ocean_velocity_mod:calc_u_rho)
++calculate acceleration terms handled explicitly in time
(ocean_velocity_mod:ocean_explicit_accel)
++calculate acceleration of top layer due to freesurface
effects(ocean_freesurf_mod:ocean_freesurf_drag)
++calculate frictional terms handled implicitly in time
(ocean_velocity_mod:ocean_implicit_accel)
++calculate forcing for freesurface based on baroclinic field
(ocean_freesurf_mod:ocean_freesurf_forcing)
++calculate acceleration terms handled explicitly in time
(ocean_velocity_mod:ocean_explicit_accel)
++calculate Coriolis term handled implicitly in time
(ocean_velocity_mod:ocean_implicit_coriolis)
++update freesurface (replace vertical mean -
ocean_freesurf_mod:update_ocean_freesurf)
++update velocity
(ocean_velocity_mod:update_ocean_velocity)
++compute energetic diagnostics
(ocean_velocity_mod:energy_analysis)
++compute remaining ocean diagnostics
(ocean_diagnostics_mod:ocean_diagnostics)
++apply robert time filter
++update top-level thickness
++fill boundaries
++perform data assimilation
++return ocean surface properties to coupler
(ocean_sfc_mod:get_ocean_sfc)
+end coupled loop
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2.3 How boundary conditions are handled

A major difference in MOM4 compared with previous releases is the availability
of a coupler for exchanging fluxes with other component models. Atmosphere, ice
and land component models developed at GFDL with interfaces to the coupler are
made available publicly. Within the coupling framework, all fluxes to the ocean are
routed through the ice component model. The fluxes are made available to mom4.0
via the derived type ice_ocean_boundary_type. The boundary field components are as
follows:

Ice_ocean_boundary’sw_flux : Net downward shortwave flux (Watts/m~2)
Ice_ocean_boundary’lw_flux : Net downward longwave flux (Watts/m~2)

Ice_ocean_boundarylfprec : frozen precipitation (kg/m"~2/sec)
Ice_ocean_boundary’lprec : liquid precipitation (kg/m~2/sec)
Ice_ocean_boundaryjcalving : frozen runoff to ocean (kg/m~2/sec)
Ice_ocean_boundary’t_flux : upward sensible heat flux (Watts/m~2)

Ice_ocean_boundary’q_flux : upward specific humidity flux (kg/m~2/sec)
Ice_ocean_bounrary’salt_flux : upward salt flux( kg/m~2/sec)

Ice_ocean_boundary’runoff : liquid runoff to ocean (kg/m~2/sec)
Ice_ocean_boundaryju_flux : zonal momentum flux to ocean (N/m~2)
Ice_ocean_boundary’%v_flux : meridional momentum flux to ocean (N/m"2)
Ice_ocean_boundary’,p : pressure of overlying ice and atmosphere (N/m"2)

In order to use the coupler (coupler/coupler_main.f90), boundaries of the ocean-
atmosphere-ice-land grid cells must be supplied. This information is used to define
an “exchange grid” for conservative exchange of fluxes. The exchange grid rep-
resents the union of the component model grids. Exchange grid information is
calculated prior to running the model. This step involves executing the make_xgrids
command.

At runtime, the atmosphere, ice, land, and/or ocean component models can
be disabled through namelist flags coupler_nml: do_atmos, do_ice, do_land, do_ocean.
The component boundary fields keep their initial values, or may be overridden
with data from a specified NetCDF file. This information is provided through the
data_override_table. For instance, the windstress to the ocean (from the ice model) can
be overridden with data from a climatological file with the following table entry:

"OCN", "u_flux", "taux" , "INPUT/ssmi_tau.nc",-1,-1,-1.e10,.false.,1
"OCN", "v_flux", "tauy" , "INPUT/ssmi_tau.nc",-1,-1,-1.e10,.false.,1

‘‘OCN’’ - identifies the target component model

“‘u_flux’’ - corresponds to the name of the boundary field

‘‘taux’’ - is the name of the field as it exists in the NetCDF data file
¢ “INPUT/ssmi_tau.nc’’ - is the name of the file containing the winds
¢¢-1’’ - not used

‘-1’ - not used

‘‘-1.e10’’ - constant value (-1.e10 is a flag to use the data from the file)
¢¢.false.’’ - data is on the target grid (true) or off-grid(false)
€1.0°’ - scale factor
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Alternatively, the ocean model can be run in stand-alone mode using the stand-
alone driver (mom4/drivers/ocean_solo.F90). Boundary fields are inserted into
the ice_ocean_boundary field using data_override table entries in an identical fash-
ion to the coupled model. The stand-alone option does not require execution of
make_xgrids and is appropriate for limited domain ocean configurations or more
idealized experiments.

2.4 Grid and topography generation

The grid_spec.nc file is fundamental to the running of a model within FMS. This file
contains information about the horizontal and vertical grid spacings in the model
as well as the land /sea mask. We require this file to subsequently create initial and
boundary conditions for the ocean model experiment. When running a coupled
model, grid_spec.nc also contains information about the exchange grid (as garnered
by running make_xgrids subsequent to generating the grid for the ocean-alone).

There are various options available for generating the ocean grid specification
file. For example, a global grid can be spherical or tripolar, and there are options
available for changing the resolution within regions such as the tropics. The to-
pography mask can be generated from an idealized function, or re-mapped from
another topography file such as from a dataset. All of these options, and more, are
spelled out in the preprocessing directory

src/preprocessing/generate_grids/ocean

The development of a topography file to be used in a particular ocean model
experiment generally requires a great deal of effort. The reason is that it is difficult
to provide an objective specification of the topography on an ocean model grid
which includes all the essential details about straights and throughflows. The case
of Panama is a good example, where an objective specification of a global 4-degree
grid often results in a disconnected North and South America, which clearly is
unacceptable for a realistic simulation of modern ocean circulation. Hence, some
manner of tuning is inevitable.

Topography tuning is as much an art as there comes in ocean modeling, and
it typically requires lots of experience and testing. The sensitivity of the solution
to topography details is also quite dependent on model subgrid-scale parameters,
such as viscosity. One tool that was developed at GFDL for use in organizing hand-
edits to the topography file is the edit_grid module contained in

src/preprocessing/generate_grids/ocean

An ASCII file containing index, depth pairs is prepared. edit_grid makes the
necessary modifications and outputs to a separate grid specification file. Again,
refer to the script and code for this module to garner full details for the usage.

edit_grid ASCII file format

i_index[:i_index2], j_index[:j_index2], depth
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2.5 Initial conditions and boundary conditions

Initial condition fields can be created in two manners. First, there are various ide-
alized initial conditions (e.g., global constant, zonal averaged Levitus) which can
be created for a particular grid specification file. Second, there are more realistic
initial conditions which are obtained by regridding an analyzed product, such as
that from [ ], onto the model grid. The first capability is provided by
files in

src/preprocessing/mom4_prep/idealized_ic
The regridding capability is provided by code in
src/preprocessing/regrid_3d

Notably, the regrid option can take a dataset that is originally gridded on a spherical
grid and regrid it to either a spherical ocean model grid, or to a tripolar ocean model
grid. Either form of the regridding uses a nearest neighbor approach.

As with initial conditions, it is necessary to setup boundary conditions on the
particular model grid (defined by the grid_spec.nc file) used to run the experiment.
Boundary conditions can be either idealized, with code available in

src/preprocessing/mom4_prep/idealized_ic
or taken from some dataset and regridded to the model grid, as done using files in
src/preprocessing/regrid_2d

The scripts and code are very similar to those used for the initial conditions, and
detailed documentation is provided in the code and scripts.

Note that when running a model using realistic boundary forcing, it is not nec-
essary to perform the regrid_2d step. An alternative is to leave the dataset on its
native grid and perform the regrid each time step of the model run. This is the
procedure for running a coupled model when the atmospheric grid differs from
the ocean. When the data has been regridded prior to running the ocean model, as
may be appropriate for an ocean-only run, then the “ongrid” flag can be set .true. in
the data_override_table, when running with the FMS coupler. Otherwise, the data
can reside on an arbitrary spherical grid which covers the ocean domain, in which
case “ongrid” is set false in the data_override_table.

Interior tracer restoring (or sponges) are generated exactly the same way as ini-
tial conditions, using regrid_3d.pl. An additional NetCDF file containing the damp-
ing timescale for the tracers should be generated as well. This can be accomplished
with an analysis package such as Ferret.

NOTE: missing values (such as land points) should be removed from the datasets before
using the regrid_2d and regrid_3d codes, or data_override. Ferret provides tools for removing
missing values.
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2.6 Managing multiple tracers

The purpose of this section is to describe the way that MOM4 handles tracers. The
capabilities are quite extensive, and have evolved over many years of experience
with biogeochemical simulations in earlier versions of MOM. In particular, there are
numerous means for quality control, whereby errors checks are aimed at assisting
the user when setting up the model for tracer studies.

This section was contributed by Richad.Slater@noaa.gov.

2.6.1 Definitions

This section introduces some definitions to be referred to in the following discus-
sions.

2.6.1.1 Prognostic tracers

Prognostic tracers are those tracers transported in the model via processes such as
advection and diffusion. Prognostic tracers are read in and written out to restart
files at the beginning and end of runs, respectively. There are several fields associ-
ated with each prognostic tracer. Examples are: long name, units, input file, output
file, advection schemes, minimum and maximum values.

2.6.1.2 Diagnostic tracers

Diagnostic tracers are not transported in the model. Instead, they are calculated, or
diagnosed, from local fields. Examples are frazil, in the core code, or chlorophyll
in the ocean prognostic biology package. Diagnostic tracers may be read in and
written out to restart files, but not all diagnostic tracers would do this. Diagnostic
tracers also have several fields associated with them, like the prognostic tracers.

2.6.1.3 Tracer package

A tracer package is a group of related prognostic tracers, which either have inter-
dependencies (such as the components of an ecosystem model), or are logically
related (such as CFC-11 and CFC-12). A tracer package will likely add extra tracers
in some increment greater than one (for instance, the ocmip2_biotic package adds
the following tracers: PO4, DOP (dissolved organic phosphorus), ALK (alkalinity),
O,, and DIC (dissolved inorganic carbon)). Tracer package names must be unique.

A tracer package may also have diagnostic tracers associated with it. It may also
add extra fields to the restart files, as may be necessary to ensure model answers
remain independent of whether a restart has been written or not (i.e., restart repro-
ducibility). The default package required is set for Temperature and Salinity since
these two tracers are always integrated in MOM4.

2.6.1.4 Tracer package instances

A tracer package may have a number of instances. An instance is an increment of
tracers for a given tracer package. Examples are: multiple age tracers (one global,
one northern hemisphere and one southern hemisphere), or a control run for an
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ecosystem model and a nutrient depletion run. Multiple instances save on cod-
ing by reusing code, and save on computation by using a single integration of the
physical model.

Each instance in a tracer package must have a unique name for that package.
The instance name will be appended to each variable name with an underscore
in-between. For example, for an age tracer with a name of global, the resultant
name will be age_global. This is the name that should be used in places such as
the diag table, and it is the name used in restart files. If the instance name consists
of a single underscore (_), then nothing will be appended to the variable names.

If a tracer package contains any variables which are not passive, then that pack-
age may only have one instance.

2.6.1.5 The Tracer Tree

The Tracer Tree is a linked list of fields which contain the state of the definitions of
the tracer packages, prognostic and diagnostic tracers, and some “namelist” infor-
mation for the different tracer packages.

The tracer tree consists of lists and fields. One may think of the tracer tree as a
Unix file system, where lists are like directories and fields are files. A field may con-
tain an array of one of the following types: integer, logical, real or string [character
(len = fm_string len)].

The tracer tree is controlled, internally, via the FMS file field manager.F90
module located in the shared/field manager directory. Externally, it is controlled
via the Field Table.

2.6.1.6 Ocean Tracer Package Manager

The Ocean Tracer Package Manager (TPM) consists of a module ocean_tpm.F90
located in the MOM4 directory ocean_tracers. This file houses the subroutine
calls to perform the various tasks needed to run a tracer package. There are seven
subroutines that do initialization, start of run functions (eg., read extra restart fields
or read namelists), update source terms, do end of iteration calculations, set surface
boundary conditions, set bottom boundary conditions, and end of run functions
(eg., write extra restart information). Whenever tracer packages are added to the
model, ocean_tpm.F90 needs to be changed.

There is one other module which provides support for the ocean TPM. This is
the module ocean_tpm util.F90 located in the MOM4 directory ocean_core. This
module contains pointers to things like the grid and domain variables, as well as
routines to set up tracer packages and prognostic and diagnostic tracers.

2.6.1.7 Field Manager

The field manager resides in field manager.F90 in shared/field manager and
contains routines to manipulate and query the tracer tree. Manipulation may be
done either through subroutine and function calls, or through the reading and pars-
ing of text files.

The field manager also contains routines which handle the Field Table, which
is also used by the atmospheric tracer manager and some other functions, such as
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the cross-land mixing.

2.6.1.8 T_prog and T_diag arrays

After the tracer trees are processed, the relevant information is passed into the
T_prog and T_diag arrays. These are arrays of types prog_tracer_type and diag_tracer_type,
respectively. These types are defined in ocean_types.F90 in the MOM4 directory
ocean_core.

These arrays hold such things as the 3-d values for the tracer field, name, long
name, units, surface tracer flux, bottom tracer flux, etc.

2.6.2 Using tracer packages
This section provides an overview of the steps which the program will take in de-
termining whether a tracer package is to be used, and then what it does to use it.

2.6.2.1 Introduction

To use a particular tracer package, several things need to be done:

1. A module must be created that defines the desired tracers, their sources,
boundary conditions, etc., and this routine placed in the MOM4 directory
ocean_tracers,

2. ocean_tpm mod must be modified to use the module and to call the appropri-
ate init, start, etc. routines,

3. the model must be (re-)compiled,

4. the run script must turn on the desired tracer package(s) via the Field Table,
provide initial and boundary condition files (if needed), select the desired
diagnostics via the Diag Table, and set and “namelist” and control values
(i.e., advection schemes, long name, units) via the Field Table.

The foloowing sections describe the steps that the model takes to run the basic
tracers potential temperature and salinity, as well as an age tracer.

2.6.2.2 Field Table processed

The first thing that is done in the model pertaining to ocean tracers is that the Field
Table is read and processed. A sample field table file is given below for the case
when we are initializing the tracer.

#
# Potential temp and salinity
#

"tracer_packages" "ocean_mod" "required"
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horizontal-advection-scheme = mdfl_sweby
vertical-advection-scheme = mdfl_sweby
file_out=RESTART/ocean_temp_salt.res.nc
/

"prog_tracers","ocean_mod","temp"
file_in = INPUT/INPUT/woa0l_temp_annual_omlp5.nc
init=t

/

"prog_tracers","ocean_mod","salt"
file_in = INPUT/INPUT/woaOl_salt_annual_omlp5.nc
init=t

/

#
# Age tracers
#

"tracer_packages","ocean_mod","ocean_age_tracer"

names = global, nh
horizontal-advection-scheme = mdfl_sweby
vertical-advection-scheme = mdfl_sweby
file_in = INPUT/ocean_age.res.nc
file_out = RESTART/ocean_age.res.nc
min_tracer_1imit=0.0

/

"prog_tracers","ocean_mod","age_global"
init=t

const_init_tracer = t

const_init_value = 0.0

/

"prog_tracers","ocean_mod","age_nh"
init=t

const_init_tracer =t
const_init_value = 0.0

/
"namelists","ocean_mod","ocean_age_tracer/global"
slat = -90.0

nlat = 90.0

wlon = 0.0

elon = 360.0

/
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"namelists","ocean_mod","ocean_age_tracer/nh"

slat = 0.0
nlat = 90.0
wlon = 0.0
elon = 360.0
/

Note that the field table file is divided into blocks. Each block starts with a line
containing three quoted strings, and ends with a line with a slash. The unquoted
slash will end the block wherever it occurs. For clarity, it is good practice to put the
slash on its own line. Comments start with a # in the first column, and blank lines
are ignored.

The second string at the start of the block is the model name. For the ocean
model, it should always be ocean_mod when using the field table. The first string
should be one of the following;:

tracer_package This string will turn on a tracer package and set default values
that will apply to all tracers in the package.

prog_tracers This string will set values for individual, prognostic tracers.
diag_tracers This string will set values for diagnostic tracers.

namelists There are some instances where FORTAN namelists are not appropri-
ate (dynamically allocated arrays, multiple namelists with the same name in
the same file). The tracer tree provides a mechanism to overcome these limi-
tations.

The third string is the name of the element which we want to modify. The other
lines are basically just assignments, where, if the field being assigned is an ar-
ray, one may give a comma-separated list of values (see the names variable in the
ocean_age_tracer tracer_packages block.

The table above will create a tracer tree of the following form:

/ocean_mod/
tracer_packages/
required/
file_out=’RESTART/ocean_temp_salt.res.nc’
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme=’"mdfl_sweby’
ocean_age_tracer/
names[1]=global
names [2] =nh
min_tracer=0.0
file_out="RESTART/ocean_age.res.nc’
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’
prog_tracers/
temp/
init=T
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file_in=’INPUT/woa0l_temp_annual_omlp5.nc’
salt/
init=T
file_in=’INPUT/woa0l_salt_annual_omlp5.nc’
age_global/
init=T
const_init_tracer=T
const_init_value=0.E+0
age_nh/
init=t
const_init_tracer=T
const_init_value=0.E+0
namelists/
ocean_age_tracer/
global/
slat=-90.
nlat=90.
wlon=0.E+0
elon=360.
nh/
slat=0.E+0
nlat=90.
wlon=0.E+0
elon=360.

where the lists end in slashes and fields are assignments.

2.6.2.3 Prognostic tracer initialization

The initialization of a tracer package is done in ocean_prog_tracer_init, which is
containted in ocean_tracer.F90. Two subroutines are provided in ocean_tpm_util_mod
to make this easier. They are otpm_set_tracer_package, to set a tracer package, and
otpm_set_prog_tracer, to set a prognostic tracer. The otpm_set_tracer_package
will set a tracer package, and optionally define new values for the fields of all of
the prognostic variables in that tracer package. These values are merged with those
defined by the Field Table. In our exampple above, this will give us a dump of
the tracer_packages part of the Tracer Tree as:

tracer_packages/

required/
names=NULL
units=’ "’
conversion=1.
offset=0.E+0
min_tracer=-1.E+20
max_tracer=1.E+20
min_range=1.
max_range=0.E+0
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ocean_age_tracer/
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use_only_advection=F
file_in=’INPUT/ocean_tracer.res’

init=F

name_in=’ ’

scale_in=1.

additive_in=0.E+0

const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_temp_salt.res.nc’
flux_units=’ ’

min_flux_range=1.

max_flux_range=0.E+0
min_tracer_limit=-1.E+20
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

names [1]=global

names [2] =nh

units=’yr’

conversion=1.

offset=0.E+0

min_tracer=0.0

max_tracer=1.E+20

min_range=1.

max_range=0.E+0
use_only_advection=F
file_in=’INPUT/ocean_age.res’
init=F

name_in=’ "’

scale_in=1.

additive_in=0.E+0
const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_age.res.nc’
flux_units=’m’

min_flux_range=1.
max_flux_range=0.E+0
min_tracer_limit=-1.E+20
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl\_sweby’

The default tracer package, required, is initialized in ocean_prog tracer_init,
whereas all other packages are initialized in calls from ocean_tpm_init.

After the call to otpm_set_tracer_package, the names fields are checked for each

tracer package. If any of them are NULL (have no value assigned) then that tracer
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package will not be used in the run and a flag will be set to indicate that. If there
are values set (as in the ocean_age_tracer above), then the tracer package will be
marked as being used, and an instance of the tracer package will be created for
each value in the names array. Therefore, in out above example we’ll create two
instances of the age tracer, one named age_global and one named age_nh. Note
that the required package is a special case, Even though its names is NULL, the
package is still used. After all, it is required.

Next, for each instance of the tracer package, each variable will be initialized
via a call to otpm_set_prog_tracer. Again, optional values for the fields of the
prognostic tracer may be set in the call. This routine will merge the values from the
tracer_packages tree for this package with any values that were set via the Field
Table, and it own arguments and defaults. The precedence is Field Table, local
arguments, tracer_packages tree. A dump of the prog_tracers tree is as follows:

prog_tracers/
temp/

longname=’Potential”temperature’
units=’deg_C’
conversion=4128868.526280635
offset=273.14999999999998
min_tracer=-5.
max_tracer=55.
min_range=-10.
max_range=100.
use_only_advection=F
file_in=’INPUT/woa0l_temp_annual_omlp5.nc’
init=T
name_in=’temp’
scale_in=1.
additive_in=0.E+0
const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_temp_salt.res.nc’
flux_units=’Watts’
min_flux_range=-10000000000000000.
max_flux_range=10000000000000000.
min_tracer_limit=-2.
max_tracer_limit=32.
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme=’"mdfl_sweby’

salt/
longname=’Salinity’
units=’psu’
conversion=1.0349999999999999
offset=0.E+0
min_tracer=-1.
max_tracer=55.
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min_range=-10.

max_range=100.

use_only_advection=F
file_in=’INPUT/woa0l_salt_annual.nc’
init=T

name_in=’salt’

scale_in=1.

additive_in=0.E+0

const_init_tracer=F
const_init_value=0.E+0
file_out="RESTART/ocean_temp_salt.res.nc’
flux_units=’kg/sec’
min_flux_range=-100000.
max_flux_range=100000.
min_tracer_limit=5.

max_tracer_limit=42.
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

age_global/
longname=’Age~global’
units=’yr’
conversion=1.
offset=0.E+0
min_tracer=0.E+0
max_tracer=1.E+20
min_range=1.
max_range=0.E+0
use_only_advection=F
file_in=’INPUT/ocean_age.res.nc’
init=T
name_in=’age_global’
scale_in=1.
additive_in=0.E+0
const_init_tracer=T
const_init_value=0.E+0
file_out=’RESTART/ocean_age.res.nc’
flux_units=’m’
min_flux_range=1.
max_flux_range=0.E+0
min_tracer_limit=0.E+0
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

age_nh/
longname=’Age™nh’
units=’yr’
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conversion=1.

offset=0.E+0

min_tracer=0.E+0

max_tracer=1.E+20

min_range=1.

max_range=0.E+0
use_only_advection=F
file_in=’INPUT/ocean_age.res.nc’
init=T

name_in=’age_nh’

scale_in=1.

additive_in=0.E+0
const_init_tracer=T
const_init_value=0.E+0
file_out="RESTART/ocean_age.res.nc’
flux_units=’m’

min_flux_range=1.
max_flux_range=0.E+0
min_tracer_limit=0.E+0
max_tracer_limit=1.E+20
vertical-advection-scheme="mdfl_sweby’
horizontal-advection-scheme="mdfl_sweby’

After the file is processed, ocean_prog_tracer_init will determine the number of
prognostic tracers and allocate the T_prog array and will loop over the variables in
the tracer tree and assign values into the T_prog array. Restart, or initial condition,
files are read and some variables are set up for processing by the diag manager.

2.6.2.4 Diagnostic tracer set up

The set up for diagnostic tracers is similar to that used for prognostic tracers. Diag-
nostic tracers are set up in ocean_diag_tracer_init for base MOM4 tracers, and in
the appropriate tracer_package _set_up routine, for those associated with a given
tracer package. The T_diag array is allocated and filled in the ocean_diag_tracer_init
routine.

Diagnostic tracers are not turned on or off explicitly like prognostic tracers.
Instead, the appropriate tracer packages are coded to set up diagnostic tracers as
needed, and the user only needs to possibly modify such things as the restart file
names or initial conditions. Diagnostic tracers may also be defined in the base
MOM4 code (such as frazil), and these, too, are defined because of the selected
features/schemes which have been compiled into the model.

2.6.2.5 Namelist tree set up

The tracer packages could use regular Fortran90 namelists to set parameter values.
However, there are some problems with this relating to the number of instances.

If we have multiple instances of a tracer package, say three age tracers, we need
a way to set the parameters for each instance. One possible way to do this is to
make each parameter a dynamically allocated array—of dimension 3, in this case.
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Unfortunately, Fortran90 does not allow allocatable arrays in namelists. Another
alternative is to use multiple namelists in the input, where the namelist includes
the instance name. This works on some platforms, but the Fortran90 specification
does not say what should be done in the situation of more than one namelist with
the same name in a single file. Therefore, this solution may not be portable. Finally,
one could put the the namelists in separate files, but then the program would need
to be told which files to look in, and this quickly gets complicated.

A solution is to use the field manager in a manner similar to the tracer trees
to handle namelists. A separate tree is set up at /ocean mod/namelists and each
tracer package can set up a list off of that. These are typically set up in the appropri-
ate tracer_package _start routine and processed in tracer_package _start. Rou-
tines to aid in the namelist set up are otpm_start_namelist and otpm_end namelist
in the ocean_tpm_ util mod module. As is the case with the other initialization rou-
tines, the values from the Field Table will be merged with those defaults set in the
subroutines. The namelists tree that results from the ocean_age _tracer mod and the
Field Table above is:

namelists/
ocean_age_tracer/
global/
coastal_only=F
t_mask[1]=T
t_mask[2]=T
t_mask[3]=T
t_mask[4]=T
t_mask[5]=T
t_mask[6]=T
t_mask([7]=T
t_mask[8]=T
t_mask[9]=T
t_mask[10]=T
t_mask([11]=T
t_mask[12]=T
age_tracer_type=’not used’
wlon=0.E+0
elon=360.
slat=-90.
nlat=90.

nh/
coastal_only=F
t_mask[1]=T
t_mask[2]=T
t_mask[3]=T
t_mask([4]=T
t_mask[5]=T
t_mask[6]=T
t_mask([7]=T
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t_mask[8]=T

t_mask[9]=T

t_mask[10]=T

t_mask[11]=T

t_mask[12]=T
age_tracer_type=’not used’
wlon=0.E+0

elon=360.

slat=0.E+0

nlat=90.

2.6.2.6 Error checking

When you look at the code, you will find much effort has gone into checking for
errors in the entries of the Field Table. Hopefully this code will help catch, at start
up, many typos which sometimes find their way into our input files. Things that
can be caught are typing wlonn instead of wlon. If this happens, an error message
is printed, the extra field name is printed and the model will abort. This is similar
to what would happen in a traditional FORTRAN90 namelist. Two classes of er-
rors cannot be caught: when what one mistypes is a valid name in itself (like wlon
instead of the desired elon), and entries in another component model (like typing
atmos_mod instead of ocean_mod).

2.6.3 Coding new tracer packages

Until more documentation is written, and even thereafter, the best place to see how
to write your own MOM4 tracer packages is to look at the example code in the
ocean_tracers directory. There are presently a handful of packages supported for
use in MOM4.0. Future contributions to MOM4 tracer capabilities should emulate
the approaches used in these tracer packages.

2.7 Static memory for optimizing on SGI machines

Fundamental to the FMS design philosophy is the desire to maximize flexibility of
code. This approach has its benefits in allowing for minimal spin-up time for users
to use FMS tools for productive research. Consistent with this philosophy is the
use of dynamic memory allocation as the default in mom4.0 and other FMS com-
ponent models. Dynamic memory allocation means that the model does not know
the size of the arrays until specified at runtime via the input of the grid-spec file
and the tables setting the number of tracers. Hence, with the same executable, the
user can change the processor domain decomposition, model grid, and number of
tracers. This flexibility has been found to be quite useful for development purposes,
adding tracers at an intermediate point in an experiment, and running ensembles
of experiments.

Experience at other research institutions have indicated that dynamic memory
allocation can come with the price of relatively poor performance. Experience at
GFDL with SGI Origin machines are consistent with this experience. However,
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it is not fully clear where the problem lives. Preliminary suggestions point to a
feature that slows down code employing array syntax, especially array syntax in-
volving derived type fields. However, tests moving from mom4-beta2 to mom4.0
are ambiguous, since mom4-beta2 did not use derived types whereas mom4.0 uses
them extensively, and no significant efficiency difference was noted between the
two codes. Whether it is a compiler bug or not, SGI is presently investigating this
issue which will hopefully be resolved in the near-future. Furthermore, it is not
known whether other machines share this bug.

In the meantime, mom4.0 is provided with a static memory allocation option
implemented via the cpp-preprocessor compiler option STATIC_MEMORY . Static
allocations mean that the memory requirements for the model are specified at com-
pile time. Tests with mom4.0 on the GFDL SGI Origin machines result in an ap-
proximately 2x performance enhancement. Use of the STATIC_.MEMORY cpp-
preprocessor option in mom4.0 requires the model domain decomposition and model
grid size to be specified at compile time. Furthermore, the resulting processor
domain decomposed grid must have an identical number of computational grid
points for each processor domain. This constraint restricts ones ability to arbitrar-
ily decompose the grid across processors. It is important to keep this point in mind
when developing the grid for an experiment. For example, use of a prime number
of grid points severely limits the domain decomposition possibilities available for
the experiment.

Although grid information at compile time is needed, we do not need to specify
the number of prognostic and diagnostic tracers at compile time. This is due to the
treatment of tracers through the FMS field_manager, where tracer information is
read in via tables.

An example of a compiler option for a model with 180 points in the i-direction,
174 points in the j-direction, 50 vertical levels, and running on 6 X 6 processors is
the following:

set cppDefs = ( "-Duse_netCDF -Duse_1ibMPI -DSTATIC_MEMORY -DNI_=180
-DNJ_=174 -DNK_=50 -DNI_LOCAL_=30 -DNJ_LOCAL_=29" )

2.8 SHMEM versus MPI

MOM4 can be compiled and run using either MPI or SHMEM. For an MPI compi-
lation, we add

-Duse_1ibMPI
the cppDefs as shown above. For SHMEM, we have

set cppDefs = ( "-Duse_netCDF -Duse_libSMA -DSTATIC_MEMORY -DNI_=180
-DNJ_=174 -DNK_=50 -DNI_LOCAL_=30 -DNJ_LOCAL_=29" )

On the SGI Origin at GFDL, SHMEM is more efficient than MPI. When running
MOM4, the answers obtained with MPI agree at the bit-level to those obtained with
SHMEM.
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2.9 MOM4 printout

MOM4.0 generates ascii output that is sent to the Fortran units stdout and stdlog.
stdlog contains information about the module version being employed as well as
the namelist settings for the module. This information is crucial for those wishing
to reproduce experimental results at later dates, where code or parameter settings
may have been changed in the interim. All FMS modules write this information to
stdlog.

For the ocean model, namelist information is also written to stdout. In addition,
stdout contains various quality control statements highlighting what the model is
using, as well as warnings to indicate possible conflicts. MOM4.0 has a wide array
of options, and it is important that such verbosity be employed to communicate
to the user what the model is doing. Correspondingly, it is strongly encouraged
that the user frequently read printout files to ensure that the model is running in a
physically relevant manner. If users have suggestions for clearer or more complete
output statements, please provide such to the MOM4.0 developers.

2.10 Test cases

MOM4 is distributed with test cases. The test cases serve many purposes for both
the developers and researchers using the code. Details of the test cases can be found
in the runscripts and README files distributed with the code. The first test case
is a flat bottom sector model with solid walls. Similar models have been used for
idealized studies of thermohaline circulation variability. The second test case is a
global model whose grid is based on spherical coordinates. The third test case is a
global model whose grid is based on the [ ] tripolar grid described in
Chapter 4. No polar filter is used for this test case since the polar singularity has
been removed from the ocean. The fourth test case couples the ocean to the GFDL
Sea Ice Simulator (SIS) model. The fifth test case is a channel model that tests the
open boundary condition.

2.10.1 Purposes of the test cases

Importantly, MOM4 test cases are not sanctioned for physical integrity. Let us be
clear on this statement:

MOM4 TESTS ARE NOT SANCTIONED
FOR THEIR PHYSICAL INTEGRITY!

Instead, tests are distributed for the following reasons:
e To illustrate how to set up and run an experiment.

o To verify that the model solution is independent of the number of processors
and whether a restart occurred or not.
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e To computationally exercise certain parts of the code, such as domain topolo-
gies, physical parameterizations, and numerical methods. That is, to pro-
vide the researcher with a sense for the baseline numerical/computational
behaviour of the code.

e Those wishing to contribute new code to the main branch of mom4 should
document how the test cases are affected. If appropriate, a new test case
should be constructed exercising the new algorithm.

There has been minimal tuning involved in the construction of test cases. Hence,
the researcher should not consider a test case as an “off the shelf model configura-
tion” appropriate for conducting relevant and publishable research. Indeed, there is
no guarantee that the test cases will run for an indefinite period of time. Providing
full support for “off the shelf” configurations is, unfortunately, beyond the abili-
ties of the MOM team. Given these caveats, the test cases nonetheless can provide
a useful starting point for the researcher who wishes to build models addressing
particular research questions.

2.10.2 Namelists

A particular experiment is defined by its grid, forcing, physics, and dynamics.
Much of the experimental details are specified by namelist settings. Namelists al-
low one to modify many of the experiment details while using the same executable,
and so not requiring a new compilation. This approach, introduced in MOM1,
greatly enhances the model flexibility and usability.

A complete listing of the namelist parameters available for a module can be
found via the associated html documentation provided with each module. Reading
the fortran source code is also, clearly, a way to understand what is available.

2.11 Reproducibility across processors and restarts

Simulations conducted on multiple processors should not be a function of the num-
ber of processors. In addition, answers should not depend on whether the model is
run with static or dyanamic memory allocation. To verify that answers are identi-
cal requires one to simply run the model on various numbers of processor elements
(PEs), and the results must be bit-wise exactly the same. Analogously, models run-
ning for a time period X on N, PEs should agree bitwise to models running a time
X /2 on Ny, PEs plus X/2 on N, PEs. The second check is more encompassing since
it tests both the integrity of the code used to start and stop the model (i.e., restarts),
as well as the internal functioning of the model’s algorithms in a parallel computa-
tional environment.

211.1 Testing for reproducibility

There are two basic ways to test that answers reproduce across PEs. The first is to do
a binary comparison of the restarts produced at the end of runs realized on different
PEs. A second way is to examine the “ending checksums” printed at the bottom of
the MOM4 printout file (the file produced from stdout). This checksum will exhibit
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differences when there is a bug. The preferred method for checking reproducibility
is the checksum approach. The reason is that for some processor counts, we have
found that the number “0” within a restart file can be translated into the equivalent
“-0”. Doing a binary difference of the restart files can then lead to the misconception
that there is a significant difference. In these cases, the checksums written to the
prinout files will remain identical to the bit. The problem with plus/minus zero in
the restart files remains under investigation. Again, it is of no consequence to the
ability of the stdout checksums to reproduce.

Bit-wise reproducibility is often a computationally expensive means of com-
puting. Hence, forcing the model to exhibit such reproducibility for all numerical
diagnostics may be prohibitively expensive on some platforms. Therefore, some
diagnostics (e.g., energetics) printed to stdout will not agree to the bit, and so can-
not be used to verify reproducibility across PE counts. Other diagnostics, such as
single time step diagnostics for tracers, are bitwise reproducible and can therefore
be used to verify the model is properly reproducing.

211.2 Reproducibility between static and dynamic allocation

Reproducibility across PEs, across restarts, and between static/dynamic memory
allocation are important constraints that generally must be maintained in order for
the code’s integrity to remain solid. All test cases run on the GFDL SGI Origin
machine satisfy these constraints.

However, maintaining a bit-wise agreement between static and dynamic arrays
on other machines, such as a Beowulf cluster at GFDL, has been found difficult to
achieve. Based on the bit-wise agreement found on the SGI Origin, we believe there
is no bug in the code. Instead, we speculate that some compilers may not allow for
bit-wise agreement when changing the way memory is allocated. Note that the
motivation for using static allocation is far less when running on the Beowulf, since
timing differences are much smaller than on the SGI Origin.

In general, we hope to resolve the static and dynamic differences in efficiency
found on SGI machines, both by working with compiler writers and modifying
certain FMS code algorithms. If we succeed, we plan to remove the static option in
the near future.
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Part 11

Fundamentals of MOM4
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FUNDAMENTALS OF MOM4

The purpose of this part of the MOM4 Guide is to provide some grounding in
the fundamental physical, mathematical, and numerical aspects of MOM4. There
are many topics omitted here, with the book by [ ] suggested for those
wishing to understand fundamentals underlying ocean climate models. Nonethe-
less, there are many details outlined in this part of the MOM4 Guide that are useful
to those wishing to understand certain details of the model’s algorithms.
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This chapter presents a summary of the ocean primitive equations. We also
describe their ensemble mean form discretized in MOM4. Full details are provided

by [ l.

3.1 Orthogonal coordinates and the Traditional Approxima-
tion

The ocean primitive equations are based on taking the Traditional Approximation to
the Navier-Stokes equations. This approximation represents a statement about the
spherical geometry on which fluid parcels move. We summarize here some key
mathematical results of use in the following.
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Figure 3.1: A schematic of the coordinates used for describing fluid dynamics on
a rotating sphere, where the rotation axis is aligned through the north pole of the
sphere. The coordinate 0 < A < 277 is the longitude, with positive values measured
eastward from Greenwich, England. The coordinate ¢ is the latitude, with values
¢ = 0 at the equator and ¢ = 7/2(—7/2) at the north (south) poles. The radial dis-
tance r is measured here with respect to the center of the sphere. The explicit coor-
dinate transformations are x! = r cos pcos A, x> = r cos ¢psin A, and x*> = r sin ¢.
Note that for many idealized geophysical fluid studies, cartesian coordinates refer to
those defined locally to a tangent plane at some point on the surface of the rotating
sphere. Such f-plane or f-plane coordinates (e.g., [ , D
are distinct from the cartesian coordinates defined here.

3.1.1 Spherical and Cartesian coordinates

The World Ocean forms a thin layer of fluid moving on the rotating earth. For
purposes of ocean climate modeling, it is sufficient to approximate the earth as

a sphere (see [ ] for a discussion). Such constitutes a fundamental
distinction from non-geophysical fluid mechanics formulations of the equations of
motion (e.g., [ 1), where the equations are typically de-

rived in 3D Euclidean space. A rigorous and lucid treatment of fluid motion on
arbitrary surfaces is given by [ I

Figure 3.1 provides a schematic illustrating the relation between spherical and
Cartesian coordinates of use for describing fluid dynamics on a rotating sphere. The
axis of rotation passes from the southern pole to the northern pole of the sphere.
Both sets of coordinates are fixed on the rotating sphere (non-inertial coordinates).
In the next subsection, we note that MOM4 generalizes the angular coordinates
(A, @) to allow arbitrary locally orthogonal coordinates to specify angular positions
on the sphere.

3.1.2 Elements of horizontal orthogonal coordinates

MOM4 is written in generalized horizontal coordinates, where horizontal means
coordinates within a locally defined tangent plane on the surface of a spherical
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earth (see Figure 3.1). The use of orthogonal curvilinear coordinates (&1, £2) allows
for the squared infinitesimal distance between two points in the ocean to be written
as

(ds)? = (hy d&Y)? + (hy dE?)? + d22, (3.1)
where the metric, or stretching functions, h; and h; are non-negative. In terms of
the dimensionful physical horizontal distances

dx = hdé&t (3.2)
dy = hydé?, (3.3)
the line element takes the compact form
(ds)? = (dx)* + (dy)* + (dz)?, (3.4)
the volume of an infinitesimal Eulerian region of the ocean is given by
dV = (h1d&l) (hy dé?)dz = dxdy dz, (3.5)
and the physical components of the horizontal partial derivatives are
0y = hi'o (3.6)
0y = hy' 0. (3.7)

Figure 3.2 illustrates these formulae. Notably, although the introduction of phys-
ical displacements brings the metric tensor into a form analogous to that for 3D-
Euclidean space, the non-Euclidean nature of the sphere manifests by the non-
vanishing commutator

[0:,9,] = 0,0, — 8,3, = (3x In dy) 3, — (3y In dx) s, (3.8)

which vanishes only when the horizontal geometry is flat instead of curved. In
particular, the use of spherical coordinates leads to

0., 0,] = (tagqb) 0. (3.9)

3.1.3 Geometry of the Traditional Approximation

The Traditional Approximation assumes that the metric functions #; and h; are
dependent only on the horizontal coordinates (&!,&2). Radial dependence of the
metric functions is reduced to a constant radial factor R, where

R =6.371 x 10°m (3.10)

is the radius of a sphere with the same volume as the earth. Therefore, the distances
used to compute partial derivatives, covariant derivatives, areas, and volumes are
determined by a metric tensor whose components are functions only of the hori-
zontal position on the sphere.

This geometric approximation is accurate for many purposes because the ocean
forms a thin layer of fluid moving on the outer part of the earth. For example, ver-
tical motions of fluid parcels in stratified regions of the World Ocean occur over
distances of only a few centimeters to meters per day, which is far smaller than the
earth’s radius. For larger deviations, such as those occuring in convective regions,
the Traditional Approximation may be less useful (see [
for a discussion).
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El

Figure 3.2: Illustrating the generalized horizontal orthogonal coordinates used in
MOM4. The coordinate lines intersect at right angles, but generally do not fol-
low lines parallel to constant longitude or latitude on the sphere. An infinites-
imal horizontal region has area given by dA = (h;d&') (hpdé?) = dxdy. For
spherical coordinates (£!,£2) = (A, ¢), the infinitesimal horizontal distances are
dx = (r cos ¢p)dA and dy = rdd¢.

3.2 Ocean primitive equations

The laws of classical physics, including Newtonian mechanics and linear irreversible
thermodynamics, form a theoretical basis for a physical description of ocean dy-

namics. MOM4 also exploits the Traditional Approximation described in Section

3.1. Although previously fundamental to z-coordinate ocean models, MOM4 has

eliminated the Boussinesq approximation using the methods of [

A full accounting of how MOM4 discretizes a non-Boussinesq is given by [

The purpose of this section is to summarize these equations.

3.2.1 Kinematics, dynamics, and tracers

In fluid mechanics, mass conservation is associated with fluid kinematics, whereas
momentum conservation constitutes the fluid dynamics. Mass conservation for a
fluid parcel renders a relation between velocity and in situ density often known as
the continuity equation

pi+V-(pv)=0. (3.11)

Conservation of linear momentum for a fluid parcel leads to the prognostic equa-
tion for the velocity field

(pv) i+ V- (pvv) = —pgz— (f+ M)2Apv—Vp+pFY), (3.12)
In these equations, p is the in situ density,
v = (u,) (3.13)
is the three-dimensional velocity field, p is the pressure field, and
M =v0,Indy —ud,Indx (3.14)

is the advection metric frequency arising from the non-Euclidean nature of the sphere.
The friction vector F(V) is associated with momentum transport due to molecular
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viscosity.! Following the Traditional Approximation, we assume a hydrostatic bal-
ance for the vertical momentum equation, thus rendering

(pu);+V-(pvu) = —(f+M)zApu—Vp+pFW (3.15)
Pz = —pP§- (316)

Coupled to the mass and momentum equations is the equation for conserva-
tion of tracers. There are three main ocean tracers: passive tracers, such as certain
biological constituents, the active tracers temperature and salinity, and dynamical
tracers such as potential vorticity. The terms passive and active refer to their influ-
ence on density, thus influencing dynamics through pressure. MOM4 time steps
the equations for passive and active tracers, whose form is generally given by

(pT);+V-(pTv)=—-V-(pF)+pS. (3.17)

In this equation, T is the tracer mass per mass of water (i.e., the tracer concentration),
The tracer flux F is interpreted as that arising from sub-grid-scale (S5GS) molecular
processes, such as molecular diffusion. It will be reinterpreted in terms of ensemble
averages in Section 3.3. § is an interior tracer source term whose form depends on
details of the particular tracer.

3.2.2 Boussinesq equations

The Boussinesq equations are recovered by setting p — p, wherever it appears,
except when multiplying gravity

Vv =0 (3.18)
u;+V-(vu) = —(f+M)z2Au—V(p/p,) +FW (3.19)

p: = —pPg (3.20)
T, +V-(Tv) = —V-F+8. (3.21)

The constraint V - v = 0 means the Boussinesq fluid parcels conserve their volume
instead of their mass.

3.2.3 Vertically integrated equations

To time step the dynamical equations, it is most efficient to separate the fast ver-
tically integrated processes from the slower vertically dependent processes. For
this purpose, we integrate the continuity equation over the full ocean column of
thickness

D=H-+n, (3.22)

where H = H(&!, £2) is the time independent ocean depth, and 1 = n(&!, &2, ) is
the time dependent deviation of the ocean surface from its resting state at z = 0.
Assuming mass sources/sinks only at the ocean surface leads to the balance of mass
per unit area within an ocean column

(ﬁz D),f =—p V- U + Pw Juw (3.23)

IEnsemble averaging (Section 3.3) introduces more substantial SGS processes associated with
larger-scale turbulence, such as that occuring at the ocean’s microscale to mesoscale ranges.
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as well as the surface and bottom kinematic boundary conditions

p(0r+u-V)n=pygw+pw atz=rn (3.24)
u-VH+w=0 atz = —H. (3.25)
In these expressions,
~ n
po U= / dzpu (3.26)
-H
is the depth integrated horizontal momentum density,
n
ﬁZ:174(/ dzp (3.27)
-H
is the depth averaged density, p, is a constant density set to
po = 1035kg/m? (3.28)
(see page 47 of [ 1), and py gy is the mass per unit time per unit horizontal

area of fresh water crossing the ocean surface.
To consider the time tendency for free surface height 17, we expand the columnar
mass balance (3.23) to reveal

ﬁz T’,t == —Pov‘ﬁ-i-pw Qw - Datﬁz- (329)

Consequently, the ocean surface height is affected by three processes: convergence
of vertically integrated momentum, mass entering through the ocean surface, and
dilatations of the water column associated with changes in vertically integated den-
sity field (i.e., steric effects).

A similar analysis for a Boussinesq column of fluid, assuming volume sources/sinks
only at the ocean surface, leads to the balance of volume per unit area within an
ocean column

ni=—V-U+qy (3.30)
as well as the surface and bottom kinematic boundary conditions
(Oi+u-V)n=gp+w atz=n (3.31)
u-VH+w=0 atz = —H, (3.32)
where .
U:/ dzu (3.33)
-H

is the depth integrated horizontal velocity field, and g, is the volume per unit time
per unit horizontal area of fresh water crossing the ocean surface. Notably, the sur-
face height is affected only by convergence of vertically integrated momentum and
surface fluxes of volume; steric effects are absent in Boussinesq fluid kinematics.

3.3 Ensemble averaged ocean primitive equations

The ocean is fundamentally turbulent. Given sensitive dependence on initial con-
ditions, and the limitations of ocean measurements, it is not possible to obtain com-
plete knowledge of the ocean state. Therefore, when formulating the ocean’s gov-
erning equations, it is necessary to recognize our limited access to information.
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3.3.1 Ensemble averages

A common way to account for incomplete information is to consider ensemble av-
erages. As in statistical mechanics, ensemble averages are obtained by formally
considering an infinite number of ocean states, each of which is described by the
kinematic, dynamic, and tracer balances of Section 3.2. Our interpretation of en-
semble averages directly associates the distance in phase space between members
of an ensemble with the space-time scales that are not resolved by the “averaged
observer.” Assuming z-coordinates, we take ensemble averages at a fixed point in
space-time (i.e., a single point Eulerian average), and note that they commute with
all space-time derivatives and integrals.

Even though we specify averaging at a particular space-time point, there remain
ambiguities in details of the averaging method. Different methods reveal different
aspects of the averaged or mean dynamics, and deviations from the mean. Den-
sity weighted averaging plays a central role in our preferred method. Such averag-
ing has recently become more commonplace in the ocean modeling literature (e.g.,
[ ;2 ], yetit has long been part of the compressible fluids liter-
ature (e.g., [ ] as noted in the footnote on pages 21-22 of | D.

3.3.2 Averaged kinematics independent of dynamical assumptions

There are two forms of fluid parcel kinematics of importance for ocean modeling:
parcels conserving their volume and parcels conserving their mass. In general,
parcel kinematic relations provide constraints on the fluid that are maintained re-
gardless the dynamics. Therefore, we believe it to be key to the integrity and usabil-
ity of the equations describing the ensemble averaged ocean, and consequently the
ocean model, that kinematics of the averaged fluid remains independent of dynam-
ical assumptions. In particular, we do not wish to require specification of unknown
closure terms, whose form depends on dynamical details, in order to determine
kinematic relations satisfied by the averaged ocean or the ocean model. Care in for-
mulating and interpreting the averaged equations is required to maintain this very
basic principle.

A key motivation for using density weighted averaging is that it assists in our
desire to keep the averaged parcel kinematics independent of dynamical closure as-
sumptions. Providing such a simple mapping between unaveraged and averaged
kinematics generally does not require much thought when averaging the Boussi-
nesq equations, since volume conservation V - v = 0 is a linear constraint. Yet
for non-Boussinesq equations, mass conservation p; + V - (v p) = 0 is a nonlinear
constraint, thus requiring extra consideration.

Besides the mathematical utility of the density weighed approach for the non-
Boussinesq system, [?] argued for maintaining this average even when considering
the averaged Boussinesq equations. Their reasoning is based on noting that the
resulting Boussinesq system is far more accurate than the mean-field equations re-
sulting from non-density weighted averages. In this context, accuracy is based on
comparing with the small levels of diapycnal mixing in the ocean interior.
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3.3.3 Linear momentum density

For the purpose of ensemble averaging, the linear momentum density (momentum
per volume)
PV =,V (3.34)

plays a fundamental role. Hence, let us introduce it to the unaveraged balances
from Section 3.2 to yield

pt+pV-v=0 (3.35)

Vi+ V- [(00/P) VY] + (po/p) M2 AV = —(p/po) §2 — f2 AV — V(p/po) + (p/ o) EV)
(3.36)
(PT)t+po V- (TV) ==V -(pF)+pS, (3.37)

where we wrote the advection metric frequency as

M =v0;Indy —udy,Indx = (p,/p) (v0xIndy —ud,Indx) = (p,/p) M. (3.38)

3.3.4 Summary of the averaged equations

Details of the averaging process require more discussion that warranted here. We
refer the reader to [?], [ ],and [
for systematic development. For the present purposes, it is sufficient to summarize
the results from [ 1.

Using an angular bracket to signify ensemble mean, the averaged non-Boussinesq
equations take the following form. First, mass conservation for a fluid parcel and
for a vertical column of fluid is given by

(P +po V- (V) =0 (3.39)
(D*WZ) =00V - (U) + o 7, (3.40)

For the Boussinesq fluid, volume conservation for the parcel and column are given
by

V()

0 (3.41)
Uy -

V- (0) + (3.42)

In these equations, we introduced density weighted averages via

(p) (V)P = (p¥), (3.43)

and the linear momentum density of fresh water

Po qw = Pw Juw- (344)

A starred quantity represents a modified mean field given by an infinite series of
ensemble mean correlations ([ ). The precise relation between the
starred quantities and the correlations is not important, since the modified mean
fields provide the appropriate field to discretize in an ocean model, instead of the
corresponding ensemble mean field.
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The surface and bottom kinematic boundary conditions for the non-Boussinesq
fluid are

()i + 00 (@) - V" = po (W) +podyy,  atz=n" (3.45)
(u) - VH+ (w) =0 atz=—H (3.46)
and for the Boussinesq fluid we have
ni+ () - Vo' = (w) + 45, atz =n* (3.47)
(u) - VH+ (w) =0 atz = —H. (3.48)
The tracer budget for the non-Boussinesq fluid is
(P} (T))+ 2o V- (V) (T)?) = —po V - (Fgs) + () ()" (3.49)
and for the Boussinesq fluid
9 (T)?+ V- ((V)(T)?) = =V - (Fsgs) + (S)”. (3.50)

Finally, the non-Boussinesq momentum budget is

(V)i + V- (V)P () + (M) 2 A (v)P =
—((0)/p0) g2 — f2 N (%) =V ((p)/p0) + (i) (3.51)

whereas the Boussinesq budget is

V)i + V- (V) (V) + (M) 2A(v) =
—((P)/Po) 82— f2 N (V) =V ((p)/po) + (Fi). (3.52)
Recall that (v) = (v)? for a Boussinesq fluid, whereas p, (v) = (p) (v)? for the
non-Boussinesq case. In the tracer equations, the SGS flux term is given by
pFses = p T, v, = p, Fogs, (3.53)

which dominates the contribution from molecular diffusion. The SGS friction vec-

tor F;’gs likewise incorporates SGS turbulence terms

PFyl =V - (pv,v}) +2 A p My v, = p, Fly). (3.54)
The averaged equations have the same mathematical form as the unaveraged

equations given in Section 3.2. Precisely, the mapping between unaveraged and
averaged fields is given by

o — () (3.55)
p—(p) (3.56)
v — (V)P (3.57)
v — (V) (3.58)
T — (T)° (3.59)
F — (Fygs) (3.60)
S — (S)° (3.61)
FV— <F§g5> (3.62)
n—n' (3.63)
Juw — Jop- (3.64)

o = - (3.65)
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This mapping is very useful for purposes of analyzing properties of the two sys-
tems, such as their energetic balances discussed in Chapter 6. The fewer equations
we need to concern ourselves with, the better!

3.4 Mapping to ocean model variables

Having established a set of self-consistent averaged equations, we are ready to
write down the equations to be discretized in the numerical model. The discretiza-
tion is applied to the appropriate averaged continuous equations, which are written
down in this section in a bit more tidy manner than in the previous section.

First, the density variable to be discretized by the ocean model is the Eulerian
mean density

(0) = Pmodel- (3.66)

Again, this is the in situ density used for the mass continuity equation. It is gen-
erally distinct from potential density. At this point the “model” suffix refers to the
continuous ocean model, since no discretization has yet occured. Through the hy-
drostatic approximation, (p) — pp,,dqe] 1€ads to

<p> — Pmodel- (3.67)

As argued in Section 3.3.2, maintaining a tidy form of the averaged continu-
ity equation motivates our discretizing (v), instead of the conventional (v). The
distinction is nontrivial for both non-Boussinesq and Boussinesq ocean models.
Hence, we make the correspondence

(%) = Vinodel- (3.68)

Analogously, we choose to use (T)” in our model, instead of the conventional (T)

{T)” = Tmodel (3.69)

Again, the distinction between (T)? and (T) is nontrivial for both non-Boussinesq
and Boussinesq ocean models. Finally, the surface height in the ocean model corre-
sponds to the modified mean surface height n*

" = Nmodel- (3.70)

as will the modified mean surface fresh water flux

T — (9w)model- (3.71)
These mappings lead to the following equations to be discretized in the non-
Boussinesq ocean model (dropping the “model” subscript for brevity)
pr+poV-v=0 (3.72)
(ho*) ;= —po V-U+poqu (3.73)
v+ V- [(po/p) v+ (po/p) M2 NV =

- (P/Po)gi—fiAV—V(P/Po)—F (p/Po) FV) (3.74)
(PT)t+pV-(vT)=—pV-F+pS, (3.75)
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where we also made the correspondence

(Fsgs) = Frodel (3.76)
(5)” = Smodel (3.77)
<F§gs> ad F;Ilodel. (3.78)

These equations are combined with the surface and bottom kinematic boundary
conditions

PNt pou-VNn=pw+p,qe atz=mn (3.79)
u-VH+w=0 atz = —H. (3.80)

The mapping from unaveraged to averaged fields, and then from averaged to model
fields, is summarized in Table 3.1. This table is the key result from this chapter.

The continuous model equations presented above are identical in form to the
continuous unaveraged non-Boussinesq equations summarized in Section 3.2. Al-
though in the end somewhat trivial (i.e., what a round-about way to get back to the
same equations!), the intermediate steps reveal a nontrivial interpretation of the
fields discretized in the numerical model. It is hoped that such care in providing a
precise physical and mathematical interpretation for the variables adds rigor and
clarity to the foundations of MOM.

The Boussinesq model equations arise by setting p,,nqe] — Po, €xcept when
multiplying gravity. These equations are

V-v=0 (3.81)

ni=—-V-U+gy (3.82)
Vi+V-(vV)+M2Av=—(p/p.)g2—f2Av—V(p/p,) +F¥)  (3.83)
T,+V-(vI)=—-V-F+S8 (3.84)

along with the surface and bottom kinematic boundary conditions

net+u-Vn=w+qy atz=n (3.85)
u-VH+w=20 atz = —H. (3.86)
As emphasized by [?] and [ ], upon

making the hydrostatic approximation, these equations for the Boussinesq ocean
model are identical to those integrated by the Boussinesq version of MOM, with the
exception of details that have been absorbed by the turbulence tracer and momen-
tum fluxes F and F¥. Additionally, McDougall et al. argue that the interpretation of
model fields as proposed here allows for the Boussinesq equations to be far more
accurate than the alternative interpretation. Hence, for this reason, and for reasons
of mathematical elegance, we prefer the interpretation summarized by Table 3.1 for
the variables carried by the Boussinesq and non-Boussinesq versions of MOM.
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Unaveraged | Averaged Model Model Discrete
p (p) Pmodel p
4 {p) Pmodel P
v (¥) Vmodel v
v (v)” Pmodel Virjnode] = PoVmodel PV =poV
n n* "Tmodel
qw qu (qw>mode1 Jw
T (T)” Tmodel T
‘? <§>p model S
F <F?g§> F{n)odel F
E) (Fsgs) l:model )

Table 3.1: Correspondence between unaveraged continuous fields, ensemble aver-
aged continuous fields, continuous model fields, and discrete model fields.



CHAPTER

FOUR
Grids and halos
Contents

41 TheB-gridusedinMOM4 . ..................... 67
411 \VariablesontheB-grid . . . ... ... ............ 68
412 Describing the horizontal grid . . . ... .......... 68
4.1.2.1 Four basic grid points and corresponding cells 68

4122 Computing the grid distances . . . . .. ... .. 69

41.23 Grid distances carried by themodel . . . . . . .. 71

4.2 The Murray (1996) tripolargrid . .................. 71
4.3 Specifying fields and grid distances within halos . . . . ... .. 77
43.1 Interiordomains . ... ... ... . ... ....... 77

432 Exteriordomains . . .. ... ... ... ... . ... 78
4321 Solid wall boundary conditions . . .. ... ... 78

4322 Periodic boundary conditions . .. ... ... .. 78

43.3 Thebipolar Arcticgrid . . . . .. ... .. ... ... .. .. 79
43.3.1 Fields defined at points TUN,and E . . . . . .. 79

433.2 Grid distances for horizontal quarter-cells . . .. 80

4.33.3 Grid distances for horizontal full cells . . .. .. 82

43.3.4 Summary of redundancies and halo mappings 83

The purpose of this chapter is to detail the horizontal B-grid used in MOM4 as
well as the specification of field and grid values in halo regions.

4.1 The B-grid used in MOM4

The continuum partial differential equations of MOM4 are derived and discussed
]. Semi-discrete versions of these equations are also discussed,
where the equations are cast on an Arakawa B-grid. As summarized in the review

in [

article by [

the B-grid allows for a reasonably accurate representation of geostrophic currents
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even when running a coarse grid model. It was this property that motivated [
to choose the B-grid. Future model development, in which the first baroclinic radius
of deformation is assumed to be well resolved, will likely focus on the C-grid. The
reasons are that the C-grid typically performs better at fine resolution than course,
and it has some advantages over the B-grid when discretizing transport operators.
Nonetheless, as pointed out by [
there will always be unresolved baroclinic modes, such as in the equatorial region.
Hence, the B-grid may continue to have some advantage even at fine resolution.
The purpose of this section is to document the grid used in MOM4. In addi-
tion to the usual B-grid conventions, we describe grid factors used to build discrete
derivative and integral operators. Chapter 16 of The MOM3 Manual [
provides a complete discussion of the three slices x — y, x — z, and y — z. Although
we briefly discuss the vertical grid, our main focus is on the horizontal x — y plane
since this is where details of domain decomposition on parallel computers is con-
sidered.

4.1.1 Variables on the B-grid

Figure 4.1 illustrates the horizontal arrangement of prognostic model fields used
in MOM4'’s B-grid. The B-grid places both horizontal prognostic velocity compo-
nents at the same point. MOM'’s convention is that this point lives at the “northeast
corner” of the corresponding tracer cell, where northeast is in a generalized sense
when using general orthogonal coordinates. With half-integer notation, the U-point
lives at (i +1/2, j + 1/2) whereas the T-point is at (i, j). As density is a function of
temperature, salinity, and pressure, density is naturally defined at the tracer point,
as is hydrostatic pressure.

The vertical velocity component is defined according to the requirements of con-
tinuity across the tracer and velocity cells. Hence, this component lives at the bot-
tom face of the corresponding cell. Once the horizontal grid placement is defined,
the vertical position is specified for both the grid point and the vertical velocity po-
sition. Chapter 16 of The MOMS3 Manual provides further details of the vertical
grid.

4.1.2 Describing the horizontal grid

With a generalized horizontal grid, there are many grid distances required to com-
pute discrete derivatives and integrals. When constructing the grid distances in
MOM4, we aimed to design a structure useful for both B and C-grids.! It is with
this goal in mind that the names for the grid distances in the grid_generator mod-
ule are distinct from grid distances used in MOM4’s grids module. We note the
mapping between the two grid conventions in the following.

4.1.2.1 Four basic grid points and corresponding cells

On both the B and C grids, it is useful to consider the tracer cell as the basic cell, and
all other cells in their relation to the tracer cell. Given this convention, there are four

1Other grids can also be accounted for using the conventions described here. Our focus is on the
B and C grids, as these are the two most commonly used grids in ocean modeling.
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c
o=
z

Figure 4.1: Illustration of how fields are placed on the horizontal B-grid used in
MOMA4. Velocity points U; j x are placed to the northeast of tracer points T;  x. Both
horizontal velocity components u; ; x and v;  x are placed at the velocity point Uj .

basic grid points and corresponding grid cells that can be identified: T; ;, E; j, C; j,
and N; ;. Figure 4.2 illustrates these points as oriented according to the tracer cell,
with T; ; the usual tracer point. C;; lives at the northeast corner of the tracer cell,
and so represents B-grid velocity point U; j. N; ; lives at the north face of the tracer
cell and so represents the C-grid meridional velocity point. E;j lives at the east
face of the tracer cell and so is the C-grid zonal velocity point. The geographical
coordinates of these four points is sufficient to place them on the discrete lattice.

N(o'"') ®C(i,))

Tzyj) pECD

Figure 4.2: The four basic grid points for the B and C grids: T; ;, C; j, E; j, and N; ;.
T; j is the usual tracer point, with the corner C; ; and side points E; ;, N; ; associated
with the tracer point.
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4.1.2.2 Computing the grid distances

To support a discretized calculus, we must specify distances between grid points
and the grid cells. Knowing the geographical position of the four basic grid points
as well as the vertices of their corresponding grid cells is not sufficient. In addition,
we need information regarding the metric or stretching functions specific to the
coordinate system used to tile the sphere.

The traditional approach is to use spherical coordinates for tiling the sphere. In
this method, the distance between two points zonally displaced a finite distance
from one another is given by the analytic formula

Ap
Ax[a,b] = R cos ¢ / A = (R cos d) (A — Ad), 4.1)
Aa

and the distance between two points along a line of constant longitude is given by

b
Ayla,b] =R [ db=R (¢~ ¢u). (4.2)
ba

Writing this expression in a general manner leads to the generalized zonal and gen-
eralized meridional distance given by

38

Ax[a,b] = / Iy déy (4.3)
32
38

Ayla,b] = / hy dé;, (4.4)
5(17)
2

where (&1,&,) represent generalized orthogonal coordinates, and (h1,hy) are the
stretching functions specific to the coordinate system. They determine the distance
between two infinitesimally close points via the line element formula

(ds)? = (h1d&;)? + (hadéy)*. (4.5)

With dx = hydé; and dy = hy dé&,, the line element formula takes the form of the
usual Cartesian expression

(ds)? = (dx)? + (dy)>. (4.6)

It is not possible to perform the distance integrals analytically for an arbitrary
general orthogonal coordinate system. Therefore, approximations must be made.
Indeed, in MOM3 the analytical form for the zonal distance was actually approxi-

mated according to
Ax =~ R cos ¢ 4.7)

where ¢ = (¢1 + ¢2) /2 (see discussion in Section 39.6 of |
Assuming information is available only at the grid points and at the cell vertices,

D
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MOM4 chooses to compute the distance between two points along a generalized
zonal direction (i—line) as

Axfa,b) = |6 =] (W + 1) /2 (4.8)

Likewise, the distance along a generalized meridional direction (j—line) is com-
puted as

Ayla, o) = el =&l (W) + 1) /2. (4.9)

4.1.2.3 Grid distances carried by the model

Given coordinates for the grid points and grid vertices, as well as the stretching
functions evaluated at these points, we can use the approximate expressions (4.8)
and (4.9) to compute distances between the T,U,N, and E points. Figure 4.3 shows
the notation for the grid distances that define four quarter-cells splitting up each
tracer and velocity cell. Shown is the notation used in the grid descriptor module
as well as that used in MOM4. The full dimensions of the tracer and velocity cells
are shown in Figure 4.4, where again the distances computed in the grid descriptor
module are translated into the grid distances used in MOM4. Finally, Figure 4.5
shows the distances specifying the separation between adjacent tracer and velocity
points.

4.2 The Murray (1996) tripolar grid

The [ ] tripolar grid (see his Figure 7) has been a focus of ocean climate
model development with MOM4 during the year 2001-2002. This grid is comprised
of the usual spherical coordinate grid southward of a chosen latitude circle, typi-
cally taken at 65°N. This part of the grid has a single pole over Antarctica, which is
of no consequence to the numerical ocean climate model. In the Arctic region, the
Murray grid places a bipolar region with two poles situated over land, and so these
poles are also of no consequence to the numerical ocean model.

Figure 4.6 illustrates the grid lines used to discretize the ocean equations in the
Arctic using Murray’s grid. The placement of discrete model tracer and velocity
points along the bipolar grid lines is schematically represented in Figure 4.7. The
arrangement of northern and eastern vector components centered on the tracer cell
faces is shown in Figure 4.8. Details for how to transfer information across the
bipolar prime meridion located along the j = nj line are provided in Section 4.3.

Motivation for choosing the [ ] grid includes the following:

e It removes the spherical coordinate singularity present at the geographical
north pole.

¢ It maintains the usual spherical coordinate grid lines for latitudes southward
of the Arctic region, thus simplifying analysis.

e It is locally orthogonal, and so can be used with the MOM4 generalized hori-
zontal coordinates.
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Figure 4.3: Upper panel: Grid distances used to measure the distance between the
four fundamental grid points shown in Figure 4.2. These distances are computed
in the FMS grid descriptor module. The naming convention is based on a Cartesian
grid with the origin at the lower left corner of the tracer cell at (0,0), the upper
right hand corner is (2, 2), the center at (1, 1), and all other points set accordingly.
The distances are then named as distances between these grid points. Note that
each tracer cell has a local Cartesian coordinate set as here, and so there is redu-
dancy in the various grid distances. Lower panel: When read into MOM4, the grid
distances set the distance between the tracer and velocity points used in the model
(Figure 4.1) and the sides of the corresponding grid cells. A translation of the upper
panel distance names to those used in MOM4 is made within MOM4's ocean_grid
module.
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Figure 4.4: Grid cell distances used for computing the area of a grid cell. These
dimensions are related to the fundamental quarter-cell dimensions shown in Figure
4.3. Upper panel: distances computed in the FMS grid descriptor module. Lower
panel: names of the distances used in MOM4.
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Figure 4.5: Distances between fundamental grid points (upper panel) as computed
by the grid descriptor module. These distances are taken into MOM4 and used to set
the distances between tracer and velocity points (lower panel).
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/Ilug=1

j=nj

i=0=ni i=ni/z

i=ni/
i

Figure 4.6: Illustration of the grid lines forming the bipolar region in the Arctic.
This figure is taken after Figure 7 of [ ]. The thick outer boundary is a
line of constant latitude in the spherical coordinate grid. This latitude is typically at
the latitude nearest to 65°N. As in the spherical coordinate region, lines of constant
i move in a generalized eastward direction. They start from the bipolar south pole
ati = 0, which is identified with i = ni. The bipolar north pole is at i = ni/2. As
shown in Figure 4.7, the poles are centered at a velocity point. Lines of constant j
move in a generalized northward direction. The bipolar prime-meridion is situated
along the j-line with j = nj. This line defines the bipolar fold that bisects the tracer
grid. Its fold topology causes the velocity points centered along j = nj to have a
two-fold redundancy (see Figure 4.7 for more details).

e Similar grids have been successfully run by the French OPA modeling group
and the Miami MICOM modeling group.

4.3 Specifying fields and grid distances within halos

MOM4 has been designed to run on multiple parallel processors. The computation
of finite derivative operators requires the passage of information across processor
boundaries. In particular, the decomposition of the model’s global domain into mul-
tiple local domains requires that fields and grid information from one local domain
be mapped to halos of adjacent local domains. For second order numerics, the
calculation of derivatives on the boundary of a local domain requires information
within one grid row halo surrounding the local domain. Higher order numerics
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Figure 4.7: Schematic representation of the tracer and velocity cells on the bipolar
grid shown in Figure 4.6. The global computational domain consists of ni = 12
i-points for this example. The j = nj line bisects the tracer grid, which means there
are redundant velocity points along this line. Along an i—line of velocity points,
velocity cells with i = ni/2 live at the bipolar north pole, whereas velocity cells
with i = 0 = ni live at the bipolar south pole.
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Figure 4.8: Schematic representation of fields living at the north and east faces of the
tracer cells as configured using the bipolar grid shown in Figure 4.6. Typical fields
of this sort are diffusive and advective tracer flux components, and so they are
components to a vector field, hence the vector notation. The global computational
domain consists of ni = 12 i-points for this example. The j = nj line bisects the
tracer grid, which means there are redundant velocity points along this line. Along
an i—line of velocity points, velocity cells with i = ni/2 live at the bipolar north
pole, whereas velocity cells with i = 0 = ni live at the bipolar south pole.
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PE(5) PE(4)

Figure 4.9: Elements of halos needed for computing derivative information on a
local domain. The hatched region is comprised of halo points needed in order for
the processor labelled PE(0) to time step its equations. The halo values must be
transmitted from the surrounding processors since they live outside of PE(0)’s local
domain.

require larger halos.

4.3.1 Interior domains

Within the interior of the ocean model, away from global boundaries, the mapping
between domains is performed using an FMS utility that fills the halo points for
one local domain using information available to another local domain. Figure 4.9
illustrates this basic point. Shown is a central processor, arbitrarily labelled PE(0),
and a surrounding hatched region representing halo points. The width of the halo
is a function of the numerics used in the model. For second order numerics, a halo
width of a single point is sufficient. The values of fields and grid factors within the
halo are transmitted from the surrounding processors to PE(0) in order for PE(0) to
time step its portion of the ocean equations discretized on its local domain.

4.3.2 Exterior domains

For processors whose boundary touches the global model boundary; it is necessary
to specify whether the global boundary is a solid wall as in a sector model, periodic
as in a zonal channel, or folded as in the bipolar grid of [ ]. That
is, we must specify the model’s topology. Each of these three topologies requires
some special consideration, with the cases built into the MOM4 update boundary
condition module. Since these conditions are specific to the experimental design,
they are handled by a MOM4 module that sets the boundary conditions. We focus
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here on the three common topologies supported by MOM4. A fourth case, open
boundary conditions, is discussed separately in chapter 22.

4.3.2.1 Solid wall boundary conditions

For a solid wall boundary condition, all fluxes passing across the walls are zeroed
out via masks, and fields within the solid wall are either trivial or masked. Hence,
no halo updates are necessary for fields and fluxes at solid walls. However, it is im-
portant to specify self-consistent grid distances separating points within the solid
wall from those within the model’s computational domain. The reason is that vari-
ous remapping operators require grid distances be well defined for all points within
the computational domain, including those distances reaching into the halo. See
Chapter 5 for details of remapping operators. For this reason, we extend the grid
into the solid wall halo so that resolution in this region is given by the resolution
between the two nearest interior points.

4.3.2.2 Periodic boundary conditions

Zonally periodic channels (x-cyclic) are commonly run for idealized studies. Meri-
odionally periodic (y-cyclic) domains may also be of interest for simulations on an
f—plane or B-plane. For these reasons, we need to specify grid factors within the
halo assuming periodicity at the global domain boundary.

We focus here on the needs of the more common zonally periodic boundary
conditions, and refer to Figure 4.10. The same considerations hold for y-cyclic con-
ditions. For either case, we envision the grid wrapped onto itself in the appropriate
direction. With second order numerics, computation of the prognostic tracer in grid
cells Ti—1,; requires information regarding Ti—o ;. Likewise, T;—; ; requires informa-
tion about Ti—;;1,;. Higher order numerics will need to reach out further.

First consider the eastern boundary of the domain where i = ni. For a single
grid halo, we need to specify values of fields living at the T, E, N, and C points at
i = ni+ 1 (recall Figures 4.1 and 4.2 where the C point is equivalent to the B-grid U
point). Zonal periodicity renders the equalities

Thiv1,; = Ty (4.10)
Eniv1,; = Ei (4.11)
Nyiv1,; = Nipj (4.12)
Chit1,j = Cyj (4.13)

More generally, halo points with ni < i < ni + halo acquire the x-cyclic mapping

Tij = Ti-nij (4.14)
Ei,] = Ei—ni,]’ (4.15)
Nij = Nini; (4.16)
Ci; Ci—ni,j- (4.17)

At the western boundary, similar considerations lead to halo points 1 — halo <i <1
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Figure 4.10: A zonally periodic array of tracer and velocity points with a single
halo point. In this example there are ni = 6 points in the global computational
domain, and halo = 1 point in the surrounding halo region. The cyclic mapping
leads us to specify halo points with values Ti—o; = Ti=pi j, Ti=ui+1,;j = Ti=1,j, and
Ui=o,j = Ui=ni,;-

mapped to interior points according to

Tij = Titnij (4.18)
Eij = Eitni, (4.19)
Nij = Nigni,j (4.20)
Cij = Citnij- (4.21)

4.3.3 The bipolar Arctic grid

The ideas considered for the cyclic case are now generalized to the more complex
topology of the [ ] bipolar grid shown in Figures 4.6 and 4.7. In par-
ticular, Figures 4.7 and 4.8 allow us to deduce the mappings between related points
on the grid.

4.3.3.1 Fields defined at points T,U,N, and E

The generalized zonal direction (along a constant i-line) is treated with the x-cyclic
conditions shown Figure 4.10. It is the bipolar prime meridion along the j—line
with j = nj that introduces the most subtle issues. This line bisects the tracer grid.
Relating points across the prime meridion requires knowledge of the tensorial na-
ture of the field being considered. In particular, scalar fields map without a change
in sign, whereas components of a vector field have a sign change.

The U—points contain a two-fold redundancy of points along the j = nj line.
For scalars living at these points, such as some grid factors, we have the identity

Uinj = Uni—inj- (4.22)

Likewise, scalars living at the northern face of a tracer cell contain a two-fold re-
dundancy of points along the j = 7] line so that

Ninj = Nui-it1,nj- (4.23)
For vector components living at U—points, such as the B-grid horizontal velocity
field, we associate transition across the j = nj meridion with a sign change

Uinj = —Uni—inj (4.24)

Vinj = —Unizipnj- (4.25)
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This sign change takes the right handed orientation into a right handed orientation
across the meridion. Likewise, for components of vector fluxes living at the north
face of a tracer cell, we have
Fi’\l]i/nj - _F{\lfni—iﬂ,nj' (4'26)

Note that numerical roundoff may compromise these equalities in the model. Such
compromise will generally make the model energetics appear to be larger than
when running with the spherical grid, or with the tripolar grid with the fold closed
(debug_tripolar = .true.).

Moving along a j-line, halo points for scalar fields with nj < j < nj + halo are
evaluated according to the following rules

Ti,j = Thi-i+1,2nj—j+1
Ui j = Uniionj—j
Nij = Npi—it12mj—j
Eij = Eniignj—j+1

for nj < j<mnj+halo (4.27)

Vector components living at these points have the same index mapping along with
a sign flip for the field values.

4.3.3.2 Grid distances for horizontal quarter-cells

Grid distances must also be specified in halo points. Some distances also maintain
redundancy relations. Since grid distances are taken between T,U,N, or E points,
their redudancy relations and halo mappings are determined by those of their end-
points. We start by considering the grid factors defining the dimensions of quarter-
cells defined in Figure 4.3. These require the most care. Figure 4.11 illustrates the
placement of these factors on the bipolar grid. Immediately we see that the two-
fold redundancy in the velocity cells U; ,,; leads to the two-fold redundancy in grid
cell distances

dueiyj = dutwpi_jp; (4.28)
duw;yj = duepjy; (4.29)
dun;nj = dusyiinj (4.30)
dusiyj = dunyiinj. (4.31)

Now consider the mappings needed to evaluate distances within halos. First
consider the distances associated with the tracer cells. By definition, dte; ; measures
the distance between the tracer point T; ; and its “eastern” neighbor E; ;, and dtw;
is the distance between T; ; with its “western” neighbor E; 1 ;, where “eastern” and
“western” are in a generalized sense. Mathematically, these distances are

AX(Ti,]', Ei,]') = dtei,]- (432)
AX(TI'/]‘, Eifl,j) = dtwi,]- (433)
where Ax(A, B) is the distance between points A and B computed according to

the generalized zonal distance in equation (4.8). The question is how to map these
distances across the bipolar fold. To do so, we note that if we are in a halo region
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where nj < j < nj+ halo, then the scalar mappings given by equation (4.27) lead
to

AX<T1]/E ) = Ax(Tni—i+1,2nj—j+1/ Eni—i,an—j+l) (4.34)
Ax(Tl]I Ei 1,]) = Ax(Tni—1'-i-1,2nj—j—&-1/ Eni—i+1,2nj—j+l)' (4.35)

Comparison of these equalities with the definitions of dte and dtw then leads to the
halo cell relations

dtel] = dtwm i+1,.2nj—j+1 } . . .
for nj < j<mnj+ halo 4.36
dth] dteyi—it1 2nj—j+1 J=1=1 ( )

Distances to the northern and southern faces of the tracer cell, dtn and dts, are
defined by

Ay(Tj,Nij) = ding; (4.37)
Ay( 1]/N1] 1) == dtsi,j (438)

where Ay is the generalized meridional distance given by equation (4.9). Equation
(4.27) indicate that within the halo region nj < j < nj + halo,

y(Tz]/N ) = A}/( ni—i+1,2nj— ]+11Nnifi+1,2njfj) (439)
Ay(Tl]/Nl] 1) - Ay( ni—i+1,2nj— ]+1/Nnifi+1,2njfj+l)- (440)

Comparison of these equalities with the definitions of dtn and dts leads to the halo
cell relations

dtnij = dtsyiiy1,0j-j+1 } . '
’ ’ for nj < j<mnj+ halo 4.41
dts;j = dtnyi—it1,2nj-j+1 I=i=" (4.41)

Velocity cell distances are defined by

Ax(U; j, Niy1,;) due; ; (4.42)
Ax(U;j, Nij) = duw; (4.43)
y( ijr 1]+1) = duni,]’ (4.44)
Ay(Uij, Eij) = dus; (4.45)

Equation (4.27) indicate that within the halo region nj < j < nj+ halo,

Ax(U;, jr Ni, ]) = Ax(Uyi- i2nj—jr Nni—i,an—j) (4.46)
Ax(U;, ji» Ni, ) Ax(Uy;- i,2nj—jrs Nnifi+1,2njfj) (4.47)
Ay( ijr 1]+1) = AX( ni—i2nj—js Enifi,anfj) (4.48)
y( i ]/ ) = Ax( ni—i2nj—js Enifi,anf]#l)/ (4-49)
which then leads to the halo cell relations
due;; = dutwp;jonj
Auw,j = dueni—ionj- for nj < j<mj+halo (4.50)

dun;j = dusyi_jomj-;
dus;j = duny;_ionjj
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Figure 4.11: Placement of quarter-cells distances at the bipolar fold. For this exam-
ple, there are ni = 4 points in the generalized zonal computational domain. Equiv-
alance of grid factors on the fold leads to the two-fold redundancy for velocity cell

distances due; ,j = duwy;_;,j and dus; ,j = dun;_; ;.
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4.3.3.3 Grid distances for horizontal full cells

Inspection of Figures 4.4 and 4.5, with the definitions of grid points shown in Figure
4.2, leads to the definitions of distances for full horizontal cells

AX(EZ 1],E ]) = dxti,j (4.51)
A]/( i,j—1s N; ]) = d]/ti,j (4.52)
Ax(U;_1,;,U;j) = dxtn; (4.53)
Ay(ul jr ul] 1) = dytei,j (4.54)
Ax(T; ], Tiy1,)) = dxte;; (4.55)
Ay( z]r 1) = dytni,j (4.56)
Ax(NZ is N ]) = dxui,]- (4.57)
Ay( ijr 1]+1) = dyui,j (4.58)

Figures 4.12, 4.13, and 4.14 show these distances for regions surrounding the bipo-
lar fold. To generate the redudancy conditions and halo mappings, we again use
the scalar mappings given by equation (4.27). Using these relations we see that
redundancy is satisfied by the distances

dxtni,j = dxtng ii1nj (4.59)
dytninj = Adytnpi—ii1,n (4.60)
dxuipj = dXUpijpn; (4.61)
dyuinj = dYuni—in; (4.62)

Equation (4.27) indicates that within the halo region nj < j < nj 4 halo,

Ax(E;_1,j, E; ) AX(Epi—iv1,2nj—j+1, Enicignj—j+1) (4.63)
Ay(Nij-1,Nij) = Ay(Nuiziy12nj—j+1, Nuicis1,20j-f) (4.64)
Ax(U;- 1], i) = Ax(Uniciv1,2nj—j Uni-ipnj—j) (4.65)
Ay(U;;, Uj - 1) = Ay(Uniipnj—jr Uni-ipnj—j+1) (4.66)
AX(TZJIT 1)) = AxX(Tui-iv12nj—jr1, Tnicianj—j+1) (4.67)
AY(Tij, Tijr1) = AY(Tui-iv120j—j+1, Tuiviv1,20j—) (4.68)
Ax(NlijH-l ]) = Ax( ni—i+1,2nj— ]/Nm—z',an—j) (4.69)
Ay(Eij, Eij11) AY(Eni-ipnj—j+1, Eni-ianj—j) (4.70)

which then leads to to the halo cell relations

dxtij = dxtuiiy1,20j—j+1
dytij = dytpiiv12mj—j+1
dxtnj = dxtnn i 1onj-;
dyte;j = dyte,i iz j+1
dxte; j = dxteni ipnj—j11
dytn; j = dytng i 1mj-;
dxu;j = dXUpijonj—
dyuij = dyuni—ionj—j

for nj < j<nj+halo (4.71)
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Figure 4.12: Placement of tracer cell dimensions at the bipolar fold. For this
example, there are ni = 4 points in the generalized zonal computational do-
main. Equivalance of grid factors on the fold leads to the two-fold redundancy
dxti’li,n]‘ = dxtnm',lqu,n]'.
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Figure 4.13: Velocity cell distances at the bipolar fold.
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Figure 4.14: Grid distances for tracer points at the bipolar fold.
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Halo relations (nj < j < nj+ halo)

Redundancy relations

Uij = eUpizipnj—j

Uinj = € Uni—inj

Tij = € Tnizit1,2nj—j+1

Ni,j = € Npi—it12njj

Ninj = € Npi—it1,nj

Eij=¢Eniipnj—jt1

dtei,j = dtwnifl”rl/z”j*]drl

dtw; j = dteni_iv1nj—j11

dtni; = dtsui_iy1,20j—j11

dtsij = dtnyi_iy100jj+1

duejj = dutwpi_ipnj

dueij = dutwpi_i;

duw; ; = dueyi_ipnjj

duwi,n]- = duem',i,n]’

duni; = dusi_ionj |

dunz-,n]- = dusm-_l-,n]-

dus;j = dunyi_ionjj

dusinj = dunyi_inj

dxti; = dxtuiiy100j—j+1

dytij = dytpi_it12nj—j11

dxtn; = dxtng iy 10/

dxtnn; = dxtnn_iy1n;

dytei; = dyteni—ionj—j+1

dxte;j = dxteni_ipnj—jt+1

dytn;;j = dytnuiiv12nj-

dytnin; = dytnui_iyi,n;

dxu;j = dXUpi_jpnjj

dXUipj = dXUpi_jnj

dyui,j = dyini—ipnjj
i i=i

dyuinj = dyipi—inj

Table 4.1: Summary of the halo mappings and redundancies realized at the bipolar
fold. The symbol ¢ is 1 for scalar fields, and —1 for horizontal components of vector

fields.

4.3.3.4 Summary of redundancies and halo mappings

Table 4.1 summarizes the halo relations and redundancies realized at the bipolar
fold. Notice that those distances exhibiting a redundancy have their halo relations
reduce to their redundancy relations for j = nj. Additionally, the quarter-cell dis-
tances all transform from a right handed system to a right handed system. In gen-
eral, this table should be sufficient to deduce relations for any derived fields, fluxes,
etc., computed in the model.
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The purpose of this chapter is to discuss the computation of advection velocity
components in MOM4. We also discuss the linear operators used to interpolate a
field from one grid to another. These operators are used to map advection velocity
components from the tracer grid to velocity grid, as well as to map selected other
fields.

5.1 General considerations

Advective fluxes are fundamental to the Eulerian evolution of tracer and momen-
tum. How these fluxes are discretized represents a basic problem in computa-
tional fluid dynamics. Notably, because of the interpretation of model velocity dis-
cussed in [ ], there is no distinction between the advective fluxes for
the Boussinesq and non-Boussinesq versions of MOM4: they are computed using
the same numerical considerations detailed in this chapter.
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5.1.1 Two main issues

There are two considerations required to compute advective fluxes of tracer or mo-
mentum. First, there is the question of how to compute the advective velocity. Such
is the focus of this chapter. For computing fluxes across cell faces, the three com-
ponents to the advective velocity must be known on the corresponding face of the
tracer and velocity cells. However, on the B-grid, both horizontal prognostic veloc-
ity components are placed at the velocity cell point, not at the cell faces. Hence, an
averaging operation must be prescribed to diagnose the horizontal advective ve-
locity components from the prognostic B-grid velocity. MOM4 computes the hor-
izontal components of the advection velocity on the faces of T-cells in a manner
necessitated by equating pressure work to buoyancy (see Chapter 6). The vertical
advective velocity component is then diagnosed at the bottom face of the tracer
cell, based on the needs of volume or mass conservation across the tracer cell (see
Chapter 6 or [ ). Computing the advective velocity on the faces of the
velocity cell remains to be determined, and that is the main technical subject of this
chapter.

Once the advective velocity is computed on the cell faces, it remains to approx-
imate the tracer and momentum values on these faces for use in constructing the
advective tracer and momentum fluxes. There are many different approaches avail-
able. As with previous versions of the GFDL ocean model, MOM4 chooses to com-
pute the advective flux of momentum according to the requirements of energetic
consistency described in Chapter 6. These constraints necessitate a second order

centered approach, as in [ ]. The advective flux of tracer, however, is
not so constrained and there are hence many options available, some of which are
detailed in The MOM3 Manual of | ].

5.1.2 Constraints for discrete vertical velocities

One important constraint for self-consistency of the discretization is that the vertical
velocity at the T-cell bottom topography must vanish: w_bt; j ,—nx = 0, since the T-
cell top and bottom faces are horizontally oriented. A vanising bottom velocity
on T-cells is necessitated by the requirements of volume or mass conservation (see
[ 1). Many ocean models choose to set w_bt; jr—nx = 0. However,
MOM chooses to start from the ocean surface and integrate the continuity equation
downwards. Verification that the computed w_bt; ; ,—ny indeed vanishes has been
found to be a very useful check on code integrity. Relatedly, for a flat bottomed
ocean w_bu; jr—nx = 0. However, with topography, w_bu is generally nonzero at
the bottom, since the bottom on velocity cells is not flat. Section 22.3 in The MOM3
Manual of | ] details this point.

Furthermore, since the interior of the ocean domain uses constant cell thick-
nesses, in a Boussinesq model volume should be conserved (the ocean surface con-
serves volume when also incorporating the possibly nonzero fresh water fluxes).
Hence, integrating w_bt; ;, across a particular depth k > 1 should leave no net
volume flux upward or downward: y; ;dxt; jdyt; jw bt; j = O for all levels k.

Finally, volume conservation warrants the MOM4 approach for diagnosing sur-
face height on the U-cell, %, according to an area weighted average of the sur-
rounding T-cell heights 117, instead of using the minimum operation used in MOM3
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and described in the | |
paper. This issue is relevant for the Boussinesq and non-Boussinesq versions of
MOM4. We visit this issue in Section 5.3.

5.2 Remapping operators for horizontal fluxes

As stated in Section 5.1, MOM4 computes the horizontal components of the T-cell
advection velocity in a manner necessitated by equating pressure work to buoyancy
(see Chapter 6). The vertical component is diagnosed based the needs of continuity.
Hence, we assume the T-cell advective velocity components are known. We thus
need to determine the corresponding advective velocity on the face of velocity cells.

Advective velocities represent fluxes of volume per unit area. There are three
remapping operators that take discrete volume fluxes defined at tracer points or
sides of tracer cells, to discrete fluxes defined at velocity points or sides of velocity
cells. Although MOM4 is generally non-Boussinesq, we use the ideas of volume
conservation to generate algorithms for coupling advective velocities on the sides
of tracer cells to those on the sides of velocity cells. Here, we describe the linear
remapping operator taking horizontal advective velocities centered on the face of a
tracer cell to the corresponding face of a velocity cell.

5.2.1 Uniformly distributed volume flux across a face

Reference to Figure 5.1 reveals four eastward fluxes of volume per area leaving
a tracer cell that surround the single flux per volume leaving the corresponding
velocity cell. The flux leaving a tracer cell is denoted by Et in the figure, which is
a shorthand for the model’s thickness weighted advective velocity uh_et, with the
thickness factor dropped since we are concerned here with fluxes at a fixed depth.
Eu denotes the corresponding eastward flux leaving the velocity cell, and this flux
is to be determined in terms of the surrounding Et and appropriate grid distances.

We assume that along the face of a tracer cell, volume leaves through the face
with a uniform distribution. Hence, the volume per unit length per time passing
across the meridional face through the velocity point U; ; is given by

Et(i,j)dus(i, j) + Et(i, j + 1) dun(i, j), (5.1)

where the distances dus and dun are lengths along sides of the four quarter-cells
comprising a single velocity cell (Figure 5.2). Likewise, the volume per unit length
per time passing across the meridional face through the velocity point U;,1,; is
given by
Et(i+1,j)dus(i+1,j) +Et(i+1,j+1)dun(i+1,j), (5.2)
and the volume per unit length per time passing across the eastern face of the ve-
locity cell U; ; is given by
Eu(i,j)dytn(i+1,7), (5.3)

where Eu is to be determined in terms of Et, and the grid distance dytn is the merid-
ional distance between tracer points, as defined in Figure 5.3.
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5.2.2 Lever-rule and the horizontal remapping operators

We now employ linear interpolation, or a lever-rule average, to construct the vol-
ume per time passing across the east face of the Uj ; cell, thus leading to

Eu(i,j)dytn(i+1,j)dxtn(i+1,j) = [Et(i,j) dus(i, j) + Et(i, j+ 1) dun(i, j)] duw(i+ 1, j)
[Et(i+1,j)dus(i+1,j)+ Et(i+1,j+1)dun(i+1, j)] due(i, j),
where dxtn is the zonal distance along the north face of a tracer cell (Figure 5.4).
Solving for Eu leads to the remapping operator
Eu(i,j) = REMAP_ET_TO_EU(Et)(i, )
= [Et(i,j)dus(i, j)duw(i+1,j) + Et(i, j + 1) dun(i, j) duw(i + 1, j)
+ Et(i+1,j)dus(i+1,j)due(i,j)+Et(i+1,j+1)dun(i+1,j)due(i,j)]

datnr(i+1, ), (5.4)
where datnr is the reciprocal area at the north face of a T-cell given by
1
tnr(i, j) = .
datnr (i, j) dxtn(i, j) dytn(i, j) 5.3)

Analogous considerations lead to the remapping operator that takes a volume flux
Nt defined at the north face of T-cells to a flux leaving the north face of U-cells
Nu(i,j) = REMAP_NT_-TO_NU(Nt)(i,j)

= [Nt(i,j)duw(i,j)dus(i,j+1) + Nt(i + 1, j) due(i, j) dus(i, j + 1)

+ Nt(i,j+1)duw(i,j+1)dun(i, j) + Nt(i+ 1, j + 1) due(i, j + 1) dun(i, j)]

dater(i, j+1). (5.6)
In this expression, dater is the reciprocal area at the east face of a T-cell given by
1
dater(i, j) = 7
ater(i, ) dxte(i, j) dyte(i, j)’ (57)

dxte is the zonal distance between the T-cell points (Figure 5.3) and dyte is the
meridional distance along the east face of the T-cell (Figure 5.4).

5.3 Remapping operator for vertical fluxes

We now consider the remapping taking vertical volume fluxes passing across the
bottom face of tracer cells to the bottom face of velocity cells. This operator also
maps surface height from T-cells to U-cells. This remapping is distinguished from
the horizontal remapping in that there is no analogous lever-rule step. The distinc-
tion boils down to noting that the vertical remapping REMAP_BT_TO_BU moves
vertical fluxes horizontally, whereas the east and north remapping operators move
horizontal fluxes horizontally.

Reference to Figures 5.2 and 5.3, and again assuming fluxes are distributed uni-
formly across a cell face, indicates that the vertical flux of volume per unit length
passing across the southern face of the velocity cell U; ; is given by

Bt(i, j) dte(i, j) + Bt(i + 1, j) dtw(i + 1, j), (5.8)
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Figure 5.1: Schematic representation of the remapping function

REMAP_ET_TO_EU defined by equation (5.4). This function is used to remap
a horizontal flux of volume defined at the east face of T-cells (denoted by Et in
this figure) onto a horizontal flux of volume defined at the east face of U-cells
(denoted by Eu in this figure). The four fluxes Et(i, j), Et(i + 1, j), Et(i,j + 1), and
Et(i+1,j+ 1) are used to construst the flux Eu(i, j).

the vertical flux of volume per unit length passing across the northern face of the
velocity cell U; ; is given by
Bt(i,j+1)dte(i,j+ 1)+ Bt(i+1,j+1)dtw(i+1,j+ 1), (5.9)
and the vertical flux of volume passing through the velocity cell is given by
Bu(i, j) dxu(i, j) dyu(i, j). (5.10)

Assuming that the total flux passing through the velocity cell is equivalent to that
passing across the northern plus southern parts of the cell leads to

Bu(i, j) dxu(i, j) dyu(i, j) = [Bt(i, j) dte(i, j) + Bt(i + 1, j) dtw(i + 1, j)] dus(i, j)
4 [Bt(i, j+ 1) dte(i, j+1) + Bt(i+1, j+ 1) dtw(i + 1, j + 1)] dun(i, j).

Solving for Bu yields the vertical remapping operator

Bu(i, j) = REMAP_BT_TO_BU(Bt)(i, j)
= [Bt(i, j) dte(i, j) dus(i, j) + Bt(i + 1, j) dtw(i + 1, j) dus(i, j)
+ Bt(i,j+1)dte(i,j+1)dun(i,j)+ Bt(i+1,j+ 1)dtw(i+1,j+ 1) dun(i, j)]
daur(i, j) (5.11)
with daur the reciprocal area of the U-cell

1

dxu(i, j) dyu(i, j) (5-12)

daur(i, j) =
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duw(i,j)

u(i,j) |
dus(i,j)

Figure 5.2: Time independent horizontal grid distances (meters) used for the tracer
cell T; ; and velocity cell U; ; in MOM4. These “quarter-cell” distances are refined
relative to those shown in Figures 5.4 and 5.5, and they are needed for the remap-
ping between T and U cells when computing advection velocities. All distances are
functions of both i and j due to the use of generalized orthogonal coordinates. Com-
paring with Figures 5.4 and 5.5 reveals the identities dtw(i, j) + dte(i, j) = dxt(i, j),
dts(i, j) +dtn(i, j) = dyt(i,j), duw(i, j) + due(i, j) = dxu(i,j), and dus(i, j) +
dun(i, j) = dyu(i, j).
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Figure 5.3: Time independent horizontal grid distances (meters) setting the spac-
ing between tracer and velocity points in MOM4. All distances are functions of
both i and j due to the use of generalized orthogonal coordinates. When these
distances are combined with those in Figures 5.4 and 5.5, and the quarter-cell dis-
tances given in Figure 5.2, we then have full information about the discrete hori-
zontal T and U cells on the model grid. Note there is some redundancy with the
distances defined in Figures 5.4 and 5.5, where we have dytn(i, j) = dyue(i — 1, j),
dxte(i, j) = dxun(i, j— 1), dxue(i, j) = dxtn(i+1, j),and dyun(i, j) = dyte(i, j+1).
Additionally, comparision with Figure 5.2 leads to the identities dyun(i,j) =
dun(i, j) +dus(i, j+ 1), dxue(i, j) = due(i, j) + duw(i+ 1, j), dytn(i, j) = din(i, j) +
dts(i, j+1),and dxte(i, j) = dte(i, j) + dtw(i + 1, j).
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Figure 5.4: Time independent horizontal grid distances (meters) used for the tracer
cell T; j in MOM4. dxt;; and dyt;; are the grid distances of the tracer cell in the
generalized zonal and meridional directions, and dat; j = dxt; jdyt; ; is the area of
the cell. The grid distance dxtn; ; is the zonal width of the north face of a tracer cell,
and dyte; ; is the meridional width of the east face. Note that the tracer point T; ; is
not generally at the center of the tracer cell. Distances are functions of both i and j
due to the use of generalized orthogonal coordinates.
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Figure 5.5: Time independent horizontal grid distances (meters) used for the ve-
locity cell U; ; in MOM4. dxu; ; and dyu; ; are the grid distances of the velocity cell
in the generalized zonal and meridional directions, and dau; ; = dxu; ; dyu; ; is the
area of the cell. The grid distance dxun; ; is the zonal width of the north face of
a velocity cell, and dyue; ; is the meridional width of the east face. Note that the
velocity point U; ; is not generally at the center of the velocity cell. Distances are
functions of both i and j due to the use of generalized orthogonal coordinates.
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5.4 Remapping error

There are two ways to compute the vertical velocity on the velocity cell. The first
method is to compute this velocity according to the requirements of continuity over
the velocity cell, using the convergence of the remapped horizontal advective ve-
locities entering the velocity cell. The second method is to use the vertical remap
operator REMAP_BT_TO_BU to move the vertical velocity on the tracer cells to the
velocity cells. The result of these two approaches is identical when the tracer and
velocity grids are related by a linear average operator, as is the case for a spherical
grid. The need to maintain a linear relation between the tracer and velocity grids is
based on the use of linear methods to derive the remapping operators.

5.4.1 Linear grids

MOM4 computes a diagnostic that examines the differences between the two ap-
proaches for computing vertical advective velocities. It reports the difference as
a “remapping error.” If the numerical discretization is self-consistent, then the
remapping error for a spherical grid will be roundoff, with values on the order
of 1072°m s~! common. Therefore, with a spherical grid, the remapping error pro-
vides a check on the self-consistency of the grid distances and the remapping op-
erators. Effectively, what is done is to check that volume is conserved with the
remapping operators. Even when running a non-Boussinesq model, the remapping
operators are constructed to respect volume conservation.

5.4.2 Nonlinear grids

For a grid defined via a nonlinear transformation of the spherical grid, such as the
bipolar region of the tripolar grid, the grid no longer maintains a linear relation
between tracer and velocity cell distances. The result is a nontrivial remapping
error. This error can be reduced by defining new remapping operators that account
for a generally nonlinear relation between tracer and velocity grid distances. Such
remains to be done for MOM4.

One consequence of the nonzero remapping error is that for a flat bottom model
in regions where the grid distances are nonlinearly related, w_bu; j—nx does not
vanish, even though continuity is maintained for all the grid cells. The problem is
that w_bu; j x—o is defined by

w,bui,]',k:() = REMAP,BT,TO,BU(w,bti’]‘,kzo). (513)

For nonlinear grids, the linear operator REMAP_BT_TO_BU results in a slightly
different value for w_bu; ji—o than would result from an integration of the conti-
nuity equation upwards from the bottom, assuming w_bu; j,—nx = 0. Because the
vertical advective flux at the ocean bottom is masked so that no momentum will
spuriously leak out the bottom of the ocean, having w_bu;  r—ny slightly nonzero
is of no consequence. Nonetheless, it would be more satisfying to have a general
remapping operator to clean-up this issue.
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5.5 Subtleties at the southern-most row

Consider the special case of j = 0 in Figure 5.1. This row is strictly south of the
southern-most latitude comprising the computational domain of the model. How-
ever, there is a subtlety related to the treatment of the eastward volume flux leaving
the velocity cell U; j—o. That is, since this cell straddles the tracer cells T; ;—o and
T; j=1, it contains some portion that is within the computational domain. Thus, the
eastward volume flux leaving this cell is nonzero, as it is comprised of weighted av-
erage of the four surrounding eastward fluxes leaving the tracer cells. Because the
remapping function (5.4) is normalized with the area datn = dxtndytn for j = 0, it
is necessary to know the grid factors dxtn; j—o and dytn; j—¢. In particular, dytn; j—¢
is the distance between the computed tracer point T; j—; and the tracer point T; j—o
that lives outside the computational domain.

The need to know dytn; j—o presents a problem with the MOM4 method for
computing grid specifications. Grids in MOM4 are computed in two steps. First,
there is a preprocessing step whereby grid factors are computed in a generic man-
ner compatible with other models used at GFDL. This step knows nothing about
halo regions, so it only computes grid information over the computational domain.
The result of this step is a NetCDF grid specification file. The second step is to read
the grid specification file into MOM4 and translate the generic grid information into
grid arrays used by MOMA4. Since there is no halo information contained in the grid
specification file, we cannot unambiguously specify values for the grid outside the
computational domain. And because we need dytn; j—o to be known consistently
with the values for dytn; ; with j > 0, we cannot simply fill dytn; j—o with an arbi-
trary placeholder. If we do so, then the remapping function used to compute the
eastward flux leaving the velocity cell U; j—o will be incorrect, thus compromising
the vertical velocity leaving U; j—o. The symptom will be most notable in spuri-
ously large values of the vertical velocity on the velocity cell at the computational
row j = 1, as well as huge remapping errors at j = 1.

There are three solutions to this problem. First, we could extend the definition
of the grid within the grid specification file to include the extra j = 0 row. This
solution has been rejected since it adds an extra calculation that is specific to the
northeast B-grid used in MOM4. As the grid specification file is designed for use by
all grid point models, it is not desirable to corrupt it with special cases. The second
solution is to require the southern-most row in MOM4 to be filled with land. This
solution is arguably inelegant, and it has indeed prompted some debate with the
MOM4 developers. Yet this is the solution used in the GFDL ice model, which is
also on a B-grid, and so it has been the most popular solution thus far in MOM4
when aiming to couple MOM4 to other models. The third solution is to extend
the grid southward within MOM4 after reading in the grid specification file. This
solution is appropriate if we can assume a spherical grid in the southern part of the
domain, as true in most cases.
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The purpose of this chapter is to discuss energetic balances on the discrete B-
grid lattice. Most notably, choosing to maintain the integrity of certain balances
prescribes the form of the discrete advection velocity components located on the
sides of tracer cells. It also necessitates the use of second order finite differenced
advective fluxes of momentum. Tracer fluxes can remain arbitrarily discretized.
Energy balance diagnostics are important methods of use for checking the integrity
of algorithms.
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6.1 Introduction

This chapter is concerned with details of how the discrete model respects the con-
version between various forms of energy. For example, how does work done by
currents against the horizontal pressure gradient get converted into work against
gravity and/or compression? How does globally integrated discrete advection of
momentum get converted to boundary contributions? How do conversions differ
for Boussinesq and non-Boussinesq fluids?

As discussed in [ ], energy conversions in the continuum largely
follow from manipulations using the kinematic and dynamic balances. Analogous
manipulations occur on the lattice, yet with more care given to how various terms
are discretized. Maintaining exact discrete energic conversions is neither neces-
sary nor sufficient for ensuring a physically realistic solution. However, without
analytical solutions to compare with, discrete energy conversions afford the ocean
modeler some insurance that the numerical algorithm is performing with a degree
of physical integrity.

6.1.1 The utility of discrete energy conversions

Arbitrary discretizations generally fail to satisfy exact energy conversion proper-
ties. Hence, maintaining discrete energy conversions is a choice going beyond the
usual goal of providing a consistent discretization. Indeed, it can be considered a
guiding-principle, of which there are others affecting the design of MOM’s numerical
algorithms. These principles generally reduce many of the arbitrary choices other-
wise available when discretizing terms in a continuous partial differential equation.
Another analogous principle used in MOM insists that the discrete friction and dif-
fusion operators dissipate the discrete kinetic energy and discrete tracer variance,
respectively. [ ] details these issues.

MOM is predominantly of use for ocean climate modeling, where integrations
of many thousands of years are common. Therefore, it is essential that systematic
errors in algorithms, however small, be obviated. It is important for the develop-
ment of algorithms to have well defined energetic balances to test code integrity.
Without known analytic solutions, there remain few other methods to track down
bugs, short of hoping they manifest in an egregious and obviously unphysical man-
ner.

Unfortunately, it is often found that some physically relevant properties are sac-
rificed in order to ensure discrete energy conservation. Most notably, the smooth-
ness of the solution is often compromised. Hence, some model developers con-
sider order of accuracy to be the prime consideration for a numerical model. Yet
highly accurate operators do not always afford themselves exact discrete conserva-
tion laws; only approximate laws.

MOM maintains the traditional use of second order numerics for the momen-
tum equation. Doing so affords satisfaction of the discrete energy conversion prop-
erties described in this chapter. Efforts to increase order of accuracy are focused on
tracer advection, where various schemes are available beyond the traditional sec-
ond order scheme of | ]. Notably, the tracer advection scheme does not
affect considerations in this chapter.
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6.1.2 Continuous equations for the ocean model

The equations considered in this chapter represent discrete realizations of the con-
tinuum model equations presented in [ ]. For completeness, we re-
peat them here assuming hydrostatic balance. The non-Boussinesq hydrostatic
equations are

pi+pV-v=20 (6.1)
(DF) ;= —po V- U+ po (6.2)
W+ V- (vul) + M2AVP = —f2Av—V(p/po) + (p/p) EW  (6.3)
Pz=—P& (6.4)
(PT)t+po V- (vT) ==V - (pF)+pS, (6.5)

where
pvP =p,v (6.6)

is the linear momentum density. For finite domains, these equations are combined
with the surface and bottom kinematic boundary conditions

P+ Pou- V1= poW~+ Py qu atz=mn (6.7)
u-VH+w=20 atz = —H. (6.8)

The Boussinesq hydrostatic equations are recovered by setting p — p,, except when
multiplying gravity

V-v=0 (6.9)

nt=—-V-U+qq (6.10)

u,+V-(vu)+ M2zAv=—f2Av—V(p/p,) +FW (6.11)
p.=—pg (6.12)
T/+V-(vT)=—-V-F+S8. (6.13)

The surface and bottom kinematic boundary conditions are

netu-Vn=w-+qy atz =1 (6.14)
u-VH+w=0 atz = —H. (6.15)

6.1.3 Kinetic energy budget for a continuum ocean model parcel

As discussed in [ ], the kinetic energy of a fluid parcel is modified
by the effects of pressure and friction. It is useful to summarize these results in
order to anticipate some of the discrete manipulations made in this chapter. For
this purpose, multiply the momentum equation (6.3) by p, to find

(puP);+ V- (pvPu?) + pMP2IAVP = —f2 A pvP —Vp+ pFW, (6.16)

where we used the relation pv® = p, v for the linear momentum density. Now take
the inner product of this budget with the horizontal velocity u” to find

u’ - (pu);+ (u”);9;(p (v°); (u’);) = —u’-Vp+pu’- FW, (6.17)
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where tensor labels were exposed where needed for clarity. Use of mass conserva-
tion in the form p; + V - (pv?) = 0 leads to

(p}C),t—f-V- (prlC) = —up-Vp—i—pup-F(u), (6.18)

where

1
K= Eup -uf (6.19)

is the kinetic energy per mass of a continuum model fluid parcel. Notably, it is
the model’s velocity u”, not u, that determines the model’s kinetic energy. This
distinction is relevant only for the non-Boussinesq fluid, since for the Boussinesq
fluid u = u”.

6.1.4 Semi-discrete momentum budget

A starting point for discretizing the continuum equations is to integrate these equa-
tions vertically over the extent of a model grid cell. Vertical integration allows for
an explicit treatment of surface and bottom boundary conditions, whose details are
crucial for the proper forcing of the ocean model. [ ] derived such
semi-discrete budgets, where it was shown that the momentum budget for an inte-
rior model grid cell with k > 1 is given by

th (al‘ +f2 A ) Uz = _(hM z A up)Zk -V (huup)zk - (h Vp)zk/po + (hpFllzlorz)Zk
- [(w up)qu - (ZU up)Zk] + [(pKusz)qu - (pKuf)z)Zk]/pOI (620)

with hy the vertical thickness of the cell. The surface cell k = 1 has the budget

hy (0t +f2A) Uz = —(hM2z A uP)y =V - (huu)y — (hVp)z, /o + (hpFyy,,)z
+ 0, [powu® — prul]z, +pyt [—ul p1y+ pw g ul), + 1) (6.21)

The budget for a Boussinesq model is recovered by setting densitites to p, and u =
u”. For the surface cell, volume conservation in the form n; = —V - U + g, leads
to the Boussinesq balance

th (af +f2/\)u21 = _(hMZ A u)Z1 -V (huu)z1 - (h vp)21/p0 + (hF;zlorz)Zl
+ (wu—«kuz)z + [qu (uy —uy) +u, V-U+1/p,]. (6.22)

6.1.5 Vertical advective velocities

As discussed in [ ], the vertical component to the advective velocity is
diagnosed by constraining the discrete fluid to satisfy mass continuity over a grid
cell. At the base of a grid cell at depth level k > 1, the model’s vertical advective
velocity is given by

Wz = Wy, + V- (h u)zk + hzk 0; (p/po)zk/ (6.23)

where the time derivative term is dropped for Boussinesq fluids. For surface cells
wherek =1,

Po Wz, = (_pw Jw + Pz rl,t) +V- (h u)zk + hzk 0t (p/po)zk/ (624)
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thus prompting us to formally set
PoWzy = —Pw Juw + Pz 0t N (6.25)
which in the Boussinesq case reduces to
Wy, = —V - U. (6.26)

Note that it is important not to confuse the advective velocity w,,, diagnosed through
continuity, with the distinct vertical velocity w(z = 1) used in the surface kinematic
boundary condition.

6.2 Pressure work conversions

We follow here the derivation first given by [ ] for the rigid lid Boussi-
nesq model. Generalizations are given here for MOM4’s bottom partial cells, ex-
plicit free surface, and non-Boussinesq formulation. A practical result from this
section is the specification of discrete advection velocities used to transport tracers.

6.2.1 Continuum results: Part I

Following the discussion of Section 6.1.3, where we derived the local budget for
kinetic energy of a parcel

(PK)i+V-(pv?K)=—u’-Vp+pu”- FW, (6.27)

we start by noting that the projection of the horizontal velocity u” onto the horizon-
tal pressure gradient is given by
uw - Vp=v" - Vp—u’p,
=V.-(v"p)—pV v+ pguw’ (6.28)
where the hydrostatic balance p, = p g was used. The divergence V - v? vanishes
for a Boussinesq fluid, yet it represents a nontrivial conversion of kinetic to internal

energy for the non-Boussinesq fluid (see [ ]). Integration over the full
ocean domain yields

—/qu”-Vp: /dAp(up-Vn—w”)+/dV(pV-vp—wppg) (6.29)
z=1

where use was made of periodic and/or no-normal flow side boundary conditions,
as well as the bottom kinematic boundary condition. The surface kinematic bound-

ary
u’ - Vn—w’ = pyqw—pn; (6.30)

leads to

— [avw - vp= [ aapl(pu/e)au—md+ [AV(pV v —wpg). (631

zZ=n
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Note that mass conservation over a fluid column allows us to alternatively write
n
Pwfw — PNt =—poV-U+ / dzp, (6.32)
-H

with the second term, the so-called steric contribution, absent for the volume-conserving
Boussinesq fluid (see [ ] for more discussion of steric effects). In-
deed, for the Boussinesq fluid we have (1) v = v*, (2) V-v = 0, (3) the den-
sity p(n) appearing in the surface kinematic boundary condition is set to p,, (4)
Nt = —V - U + g, expressing volume conservation over a fluid column, thus lead-
ing to

—/qu-Vp: /dApV~U—/depg. (6.33)
z=1

It is useful to consider three special cases, the simplest of which is the rigid lid
Boussinesq ocean. Most rigid lid models suppress the addition of fresh water!, in
which case V - U = 0 thus rendering

/qu-Vp = /depg. (6.34)

That is, for the rigid lid hydrostatic Boussinesq ocean without fresh water forc-
ing, the global effects of work done by the horizontal currents against horizontal
pressure gradients are equal to the work by vertical currents against gravity. This
equality affords the following interpretation. In a hydrostatic fluid, vertically in-
tegrated density directly determines pressure. Hence, work against a horizontal
pressure gradient force is associated with a rearrangement of the density field in
the vertical, which then involves work against gravity.
A free surface Boussinesq fluid satisfies the more general balance

—/qu-Vp: /dApV-U—/depg. (6.35)
z=n

The surface term accounts for the possibility of atmospheric pressure to apply work
to a dilatating vertical column of fluid.

For a free surface non-Boussinesq fluid, the full identity (6.37) is applicable.
The new term pV - vP accounts for the ability of pressure forces internal to the
fluid to do work on dilatating fluid parcels, and the term [,_ . dA (p/p) (/" dzp,)
accounts for work done by atmospheric pressure on a column of ocean fluid ex-
periencing expansion and/or contraction due to changes in the depth integrated
density—the so-called steric effects.

6.2.2 Continuum results: Part II

As noted in Section 6.1.1, one motivation for considering the discrete energy con-
versions is that they provide guidance on how to discretize objects in the model. In

1 ] noted the possibility of relaxing this restriction, yet we know of no realistic model
having implemented this approach.
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particular, they guide how to discretize advection velocities on the faces of tracer
cells. With the B-grid used in MOM4, it is otherwise not obvious how to compute
these velocities. An alternative to the approach in Section 6.2.1 provides insight
for this purpose, with the distinction relevant only for the non-Boussinesq case.
Instead of u” - Vp, we here consider

u-Vp=v-Vp—-wp,
=V.-(vp)—pV-v+pgw. (6.36)

The divergence term V - v = —p;/p, vanishes for the Boussinesq fluid. Integrat-
ing over the ocean domain and using the surface and bottom kinematic boundary
conditions leads to

—Po/qu-VP = / dAp (pwGw — PM,t) —po/dV[p(p,t/po) +wpgl, (6.37)
z=1

where use was made of periodic and/or no-normal flow side boundary conditions.
This result reduces to the same Boussinesq result (6.33) considered in Section 6.2.2.
The non-Boussinesq case is distinct.

6.2.3 B-grid results

We now consider manipulations of the globally integrated discrete B-grid repre-
sentation of u - Vp analogous to those discussed in Section 6.2.2. Note that in this
section, discrete grid labels will be exposed when appropriate, with many labels
suppressed to reduce clutter.

As stated in Section 6.2.2, we prefer a discrete analysis of u - Vp rather than
u” - Vp because of the guidance u - Vp provides for discretizing the tracer advection
velocities, as well as the ability to use the resulting discrete balance to check code
integrity. However, for the non-Boussinesq case, the direct interpretation of each
term according to a work per time is not as straightforward as for the considerations
of Section 6.2.1.

The domain integrated scalar product of the horizontal velocity u and the hori-
zontal pressure gradient —Vp is given by

= — > daudhu [uFDX_NT(FAY(p)) +vFDY_ET(FAX(p))]
ik
+ &Y daudhu [uFAY(FAX(p) 6;H)/dxu + v FAX(FAY (p) 6;H) /dyu]6.38)
ik

MOM4 employs the following forward derivative operators

FDX_NT(a) = % (6.39)
FDY ET(a) = “”dly;”f (6.40)

where the derivatives live on the east and north faces, respectively, of a tracer cell.
The operators 6;H and 6;H compute the forward difference

§H = Hiq—H (6.41)
§jH = Hy1—H, (6.42)



106 CHAPTER 6. ENERGETICS ON THE B-GRID LATTICE

of the bottom topography. The first term in equation (6.38) is the lateral pressure

gradient taken between cells living on the same discrete k-level. The second term
arises from the use of bottom partial cells, where the depth of a k-level is generally
a function of horizontal position. This term is the same that appears in terrain-
following sigma models. In both cases, the horizontal pressure gradient is given by
two terms

Vp=(Vo+VeHd,)p=Vep—pgVsH, (6.43)

where the hydrostatic balance p , = —p g was used to reach the second relation. The
slope of sigma surfaces can reach 1/100 next to continental slopes, at which point
the “sigma-coordinate correction term” p ¢ V,H can be on the order of V;p. In this
case, the horizontal pressure force becomes the result of two sizable terms, each
having separate numerical errors that generally do not cancel. The result can be
spurious pressure forces that drive nontrivial unphysical currents. As described by
[ ], the sigma correction term introduces only
very minor spurious currents in MOM due to (1) MOM'’s use of z-levels throughout
the region above the topography, thus isolating the sigma-correction term to just the
bottom-most level, (2) The discrete horizontal pressure gradient is chosen so that
if pressure is a linear function of depth, then the discrete gradient vanishes. This
discretization choice greatly reduces the magnitude of spurious flows.

6.2.3.1 Defining the horizontal advection velocities

Focus on the zonal piece of the first term

Pix = — z dau dhu u FDX_NT(FAY (p))
ik
1
= —5 Zdyu dhu uéi(pj—kp]-“)
= — Y BAY(dyu dhu u) 8ipj, (6.44)

where the boundary terms drop out for either periodic or solid wall conditions, and
we introduced the backward meridional average operator

_ aj+aj

BAY (a) 5

(6.45)

Let us now define the zonal thickness weighted advective transport velocity on the
eastern face of a tracer cell as

BAY (dyu dhu u)

uh,eti,]-,k = dyte, j

, (6.46)

where dyte; ; is the meridional width of the tracer cell’s east side (see Figure 6.2 for
definitions of grid distances). Doing so leads to

Pix = — Z 5ip (dyte uh_et)
= Z p i (dyteuh_et)
= Y pdat BDX ET(uh_et), (6.47)
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where boundary terms vanish, and

a: ;dyte: : —a;_1.dvyte; 1 ;
BDX ET(a) = “ 2200 — Bt L (6.48)
i,j

is a backwards finite difference operator for fields defined on the east face of tracer
cells. Similar manipulations with the meridional term v 9, p leads to

P1 =S pdat (BDX ET(uh_et) + BDY NT(vhnt)), (6.49)

with
BAX(dxu dhu v)

dxti’li,]'

vh,nti,j,k = (650)

the meridional tracer advective velocity on the north face of the tracer cell, and

a; idxtn; i —a; i dxtn; ;i
BDY_NT(a) = —1—— s (6.51)
i,j

is a backwards finite difference operator for fields defined on the north face of tracer
cells.

The horizontal advective velocities uh_et and vh_nt are defined at the sides of
the tracer cells and at the depth of the tracer point. Hence, their finite differenced
derivatives are defined at the tracer point. The corresponding vertical velocity w_bt;
is also defined at the horizontal tracer point, yet at the bottom of the tracer cell, at
the “W-point”. As discussed in Section 6.1.5, the vertical advective velocity compo-
nent is diagnosed through continuity. In a discrete form, this velocity component is
given by

w_bty = w_bty_1 + BDX_ET(uh_ety) + BDY_NT(vhnty) + dht; 0; (px/po). (6.52)

In this equation, dht; ;  is the vertical thickness of the tracer cell, the time derivative
term is absent for Boussinesq fluids, and (see Section 6.1.5)

po w_bty = P10t 1M — P Juw (6.53)
for the non-Boussinesq fluid, and
wbty = -V -U (6.54)

for the Boussinesq fluid.

6.2.3.2 Completing the manipulations for P;

Substitution of expression (6.52) for the vertical advective velocity component into
equation (6.49) leads to

P1=— z pr dat (w_bty_1 — w_ bty + dht; 0¢ (pr/Po)), (6.55)
with rearrangement of the sums rendering
P = z datz-,]- (—p1 w_bty + Puk+1 w_bt) (6.56)
1]

+Y dat dhaty w_bt P PR 1 S pedat dht 0, p, (6.57)

i dhwtk Po ik
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where dhwt; ;1 is the vertical distance between tracer points Ty and Ti,;. The
Pnk+1 W-bt,, boundary term vanishes since w_bt,; = 0; however, the surface term
p1 w-btg is nonzero for a free surface model where w_bty # 0 (e.g., equations (6.53)
and (6.54)).

The discrete hydrostatic pressure is computed as an estimate of pressure at the
depth of the tracer point, rather than as an average pressure over the full tracer cell
(Figure 6.1). That is,

Pr+1 = px + g dhwty b, (6.58)

where p* = (pr + pxs1)/2 is the vertically averaged density over the tracer cell.
Using this pressure then leads to

1
Pl = — g datz-,]- (Pl w,bto + g % dhwtk w,btk ﬁz —+ E ; Pk dl’ltk dt ,Ok> . (659)

6.2.3.3 Correspondence to the continuum results

It is useful to make a correspondence with terms from the continuum given in Sec-
tion 6.2.2. First, a rigid lid Boussinesq fluid with zero fresh water flux has

P1=— z dﬂti,]' (g ; dhwt, w_bty, ‘Okz> , (6.60)
L]

where w_bty = 0 and the density time tendency term vanishes. Hence, in this
case, work by horizontal currents on the horizontal pressure gradient equals work
against gravity. Allowing for a free surface Boussinesq fluid yields

P1=- z dati,]' <—p1 V-U+g z dhwt w_bt; p;f) p (6.61)
1,] k

where the density time tendency term vanishes and w_bty = —V - U. The added
term accounts for work done by pressure p; at the surface tracer point on a dilatat-
ing vertical column of fluid. This pressure is given by

p1 = p1 8§ (dhwty_o + eta_t) + pasm (6.62)

where eta_t is the surface height on tracer cells, and dhwt;_¢ is the distance from
z = 0 to the k = 1 tracer point z;. This pressure has a contribution from the
hydrostatic pressure within the fluid layer between z = eta_t and z = z;, and that
from the overlying atmosphere. For a non-Boussinesq fluid, equation (6.53) for
w_bty leads to

Pr=- ; dat; <(P1/Po) (0101 — Pw Guw) + & ; dhwty w_bty " + %dhtk Pk Ot Pk) ,

(6.63)
which again has a direct correspondence to the continuum results.
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ok
Td hwt(k)

®k+1

Figure 6.1: Schematic of the vertical grid cell arrangment used for computing the
hydrostatic pressure at a depth k + 1 in terms of the pressure at depth k using the
equation py1 = px + gdhwt, pr*. The vertical average of density is meant to ac-
count for the part of density within each of the two adjacent cells. The factor of 1/2
used in the average operator yields an approximate average when vertical cells are
non-uniform. Yet the 1/2 factor is used for all vertical grid spacing since it renders
a simple conversion of discrete pressure work to discrete gravity work.

6.2.3.4 The sigma-correction term P,

Now consider the zonal piece of the sigma-correction term from equation (6.38)

Pox =g 3y dxudyudhu u FAY(FAX(p) 5;H) /dxu. (6.64)
ik

Transferring the forward average FAY to a backward average BAY leads to
Pax = g S BAY(dyudhu u) FAX(p) 5;H, (6.65)

where boundary terms vanish. Introducing the zonal thickness weighted advective
transport velocity (6.46) yields

Pax =g S dyteuh_et FAX(p) 6;H. (6.66)

Moving the difference operator 6;H = H;,1 — H; from the depth H to the remaining
terms gives

Pox = —g Z H 6;(dyte FAX(p) uh_et) = —g z Hdat BDX_ET(FAX(p) uh_et),
(6.67)
where boundary terms vanish. Similar manipulations with the meridional piece of
P, lead to

Pr=—g Z Hdat [BDX _ET(FAX(p) uh_et) + BDY_NT(FAY (p) vh_nt)]. (6.68)

The P, term accounts for alterations in the potential energy due to the use of partial
bottom cells.



110 CHAPTER 6. ENERGETICS ON THE B-GRID LATTICE

P dxtn(i,j) o
A A
dyt(i.)
< dxt(ij) {100 dyte(i,)

Y Y

Figure 6.2: Time independent horizontal grid distances (meters) used for the tracer
cell Tj; in MOMA4. dxt; ; and dyt; ; are the grid distances of the tracer cell in the
generalized zonal and meridional directions, and dat; j = dxt; jdyt; ; is the area of
the cell. The grid distance dxtn; ; is the zonal width of the north face of a tracer cell,
and dyte; j is the meridional width of the east face. Note that the tracer point T; ; is
not generally at the center of the tracer cell. Distances are functions of both i and j
due to the use of generalized orthogonal coordinates.

6.2.3.5 Summary

In summary, the projection of the horizontal velocity onto the downgradient pres-
sure field is given by

= — > daudhu [u FDX_NT(FAY(p)) +vFDY_ET(FAX(p))]
ik
+ g daudhu [uFAY(FAX(p) 6;H)/dxu + v FAX(FAY (p) ;H) /dyu].
ik

1
= —Ndat;; w_bty + dhwt, w bty o + — N dhtepd
g j <P1 0 g% k % Pk o % kP th)

— g Hdat [BDX_ET(FAX(p) uh-et) + BDY_NT(FAY (p) vhnt)] ~ (6.69)

The MOM4 diagnostic energy conversion error has proven to be quite useful for de-
tecting improper discretization of various algorithms. That diagnostic computes
the left hand side of equation (6.69) and compares to the right hand side. Differ-
ences are due to errors in the code. The reason this diagnostic is so effective is that
it involves advective velocities on the tracer cells, both tracer and velocity cell dis-
tances, the calculation of pressure, and details of partial cells. Each require precise
discretization in order to ensure an energy conversion error at the roundoff level.



6.3. KINETIC ENERGY ADVECTION 111

6.3 Kinetic energy advection

This section illustrates how second order accurate centered discrete advection con-
serves globally integrated discrete kinetic energy for a rigid lid Boussinesq model.
Notably, such variance or energy conserving advection schemes are not so useful for
tracer transport due to their relatively large dispersion errors (e.g., [

Yet second order methods remain the norm for velocity advection in most z-coordinate
ocean models based on the original [ ] code, such as MOM. For the more
general case with a free surface, the integrated advection term reduces to generally
nonzero boundary contributions.

6.3.1 Continuum results

Recall from Section 6.1.3 that the kinetic energy per mass in a hydrostatic fluid
is written L = u” - u”/2, where pu” = p,u is the horizontal component to the
linear momentum density (Section 6.1.2). For the Boussinesq fluid, v¥ = v, so the
distinction between velocities is only relevant for the non-Boussinesq case. Let us
now define the volume integral of the scalar product of horizontal velocity u” and
the velocity advection terms in equation (6.3) as

E—/qup-[V-(vup)—I—M(i/\pv")]. (6.70)

The advection metric term drops out trivially. For clarity, we selectively expose
tensor labels on the horizontal velocity components to rewrite the divergence term
as

ubh V. (vub) = V-(vu’-uf)—(vub) -Vub
= 2V-(vK)—-v-VK
= V- (vK)+KV-v
= V- (vK) =K (pt/po),

where the continuity equation p; = —p, V - v was used in the last step. For a
Boussinesq fluid, similar manipulations lead to

Uy V- (Vi) =V - (vK), (6.71)

where use was made of the non-divergence condition V - v = 0. Integration over
the ocean domain and use of the surface and bottom kinematic boundary condi-
tions leads to the non-Boussinesq result

po Aup = /dVICp,t—po /dAIC(w—u-Vn)
z=n

= [avKei+ [ dAK (puge—pmy) (6.72)

zZ=n

and to the Boussinesq result

Ap = / JAKYV -U. 6.73)
z=n
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For a rigid lid Boussinesq model with zero fresh water forcing, Ag = 0. More
general models have nonzero A due either to boundary contributions and/or di-
latations of fluid parcels/columns.

6.3.2 B-grid results

We first verify that the scalar product of horizontal velocity and the advection met-
ric term trivially vanishes at each grid point. Similar manipulations are appropriate
for the Coriolis term. Written as in the numerical model, keeping only grid labels
of relevance, we have

2
w M(2zAu) = S up ub_ (uf dhldy — ub dh2dx) = 0. (6.74)

n=1

In this equation,

dhldy = d,Indx (6.75)
dh2dx = 0yIndy (6.76)

are the model arrays carrying information about the partial derivatives of the grid
spacing in the two orthogonal directions. The sum in equation (6.74) vanishes triv-
ially at each grid point upon writing out the two terms.

We next consider the scalar product of the horizontal convergence term with the
horizontal velocity u?, and integrate over the full ocean

— Aporz =
'Zk dau dhuw® - | BDX_EU(uh_eux FAX(u”))+ BDY_NU(vh_nu*FAY (u”))| /dhu.
" (6.77)
MOM4 uses the following forward averaging operators
FAX(a) = (ajz1+a;)/2 (6.78)
FAY(a) = (aj41+a;)/2. (6.79)

These operators are the unweighted averages used to estimate velocity on the ve-
locity cell faces. They are used to define the centered difference advective fluxes of
velocity. MOM4 also uses the backward derivative operators

dyue;ja; — dyue; 1 ja; 1

BDX_EU(a) = T (6.80)
L]

dxun;ja; —dxun;; 1a; 1

BDY_NU(a) = (6.81)

daui,j

These backward derivative operators act on fields defined at the east and north face
of velocity cells, respectively (see Figure 6.3 for definitions of grid distances).

As detailed in Chapter 5, thickness weighted horizontal advective velocities
uh_eu and vh_nu are defined in MOM4 by remapping the horizontal advective ve-
locities uh_et and vh_nt, defined in Section 6.2.3.1, onto the velocity cell faces. They
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satisfy continuity for each velocity cell

w_buy = w_buy_1 + BDX_EU(uh_euy) + BDY_NU (vh-nuy) + dhuy 0¢ (px/po)-
(6.82)
In this equation, w_bu is vertical advective velocity component defined at the bot-
tom face of the velocity cells. It is defined as a remapped version? of the analogous
advective velocity on the bottom of tracer cells (equations (6.52)-(6.54)). The thick-
ness dhu is the thickness of the velocity cell, and py is the density in this cell. Both
quantities are defined as remapped versions of the tracer cell thickness and densi-
ties, respectively, using the MOM4 horizontal remap function REMAP_BT_TO_BU.
We now perform the discrete analog of integration by parts. For this purpose,
expand the backwards derivative and average operators on the zonal flux terms,
dropping the j, k labels for brevity

2 % dauuf - BDX_EU(uh_eu » FAX(u’)) =

1
> u? - [dyue; uh_eu;ul | + dyue; uh_eu;uf — dyue;_y uh_eu;_1uf — dyue;_1 uh_eu;_quf ]
= Z u? - u? (dyue; uh_eu; — dyue;_q uh_eu;_1)
+ > uf - (dyue;uh-eu;uf | — dyue;_y uheu;_quf_;). (6.83)

Focus now on the second group of terms, where shifting sum labels leads to

nx
z u?-u? | dyue;_y uh_eu;_1 =
=1
nx+1 nx

z u? | -uldyue;_q uh_eu;_1 — Z u?-u?  dyue;_y uh_eu; 4
=

i=1

nx

[ , L
> ui-u dyue; uh_eu;
i=1

=up, -, . dyue,, uh_eu, —uf - ufdyueo uh_eu. (6.84)

This result vanishes for either solid wall or periodic boundary conditions. Simi-
lar manipulations apply for the meridional term ¥ u” - dau dhu « BDY _NU (vh_nu
FAY (uP)), thus leading to

Apor: = — Z K (dyue; uh_eu; — dyue; 1 uh_eu;_1 + dxun;vh nu; — dxun;_ vhnu; )

= — > daudhu K [BDX_EU(uh_eu) + BDY _NU(vh-nu)| /dhu, (6.85)
where )
ICi,j,k = E ugj,k : qu,k (686)

is the discrete kinetic energy per mass.
Now focus on the vertical advection term. We choose to handle the surface cell
k = 1 separately from the interior cells with k > 1. For the interior cells,

. . Nk
QAU = 3 dawa - [wbuy (w)_ +uf) —wbug (uf +uf, )]
=
= Z dauw_buq (uh - uf) — z dauw buyy (uf - uy, )

Nk
+2 z dau Ky (w_buy_1 — w_buy,).
k=2

2Using the MOM4 mapping function REMAP_BT_TO_BU.
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It is appropriate to set
unk+1 =0 (6.87)

since k = Nk + 1 is interpreted as part of the solid earth, thus leading to
I Nk
—2 Alnterior > dauw-buy (uy-uy) +2 % dau Ky (w-bug_ — w-buy).
k=2

For the surface cell, reference to the semi-discrete momentum budget (6.21) leads
to

2 AL — > dauw buyuf - (uf +uj) — ! > dauuf - (—uf p11;+ po o uf)

(6.88)
which when added to A" yields
Nk
Apert = z dau Ky (w_buy — w_buy_1) + Z dau K1 w_buy
k=2
+(200) 71 Y dauuf - (—uf p1 14+ po o ul). (6.89)

To bring this expression more in line with the continuum results of Section 6.3.1, let
us write

uf, = (uf), —uf) +uf (6.90)
to yield

Nk
Avert =y dau Ky (w-bug — w-bug_1) +y dau Ky w-buy
k=2

+p, 1S dauCi(—pi i+ b ) + (2p0) 1Y daunf - (uf, —uf) pu gu
Nk

= Z dau Ky (w_buy — w_buy_q1) + (2 p,) Z dauuf - (uf, —u}) pw Gw
k=1

(6.91)

where we used equation (6.25) to write p, w_buy_y = p1 1+ — Pwgw- The second

term in equation (6.91) vanishes for the special case of fresh water velocity equal to

the ocean surface velocity. This is the case typically used in ocean climate models.
Combining the results for Aj,,, and A+ renders

Nk
Aporz + Avert = — 5 dau K [BDX_EU(uh-eu) + BDY_NU(vh-nu) + (w-buy_1 — w-buy)]
¥=1
+(2p0)7" > dauuf - (uf, —uf) pw g
Nk
- z dau dhu K 0; (pr/po) + (2 00) 1 Z dauu? - (uf, —uf) pw Juw
=

(6.92)

where the continuity equation (6.82) was used to reach the second equality. For the
Boussinesq model with zero fresh water forcing, or with uf, — uf = 0, then Aj,,, +
Avert = 0, whereas the more general case is nonzero due to the compressibility of
seawater and/or fresh water forcing.
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dxun(i,j)

A

A

dyu(i.j)
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< X0 ! ) dyue(i,j)
xu(i.j)
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Figure 6.3: Time independent horizontal grid distances (meters) used for the ve-
locity cell U;,j in MOMA4. dxu; ; and dyu; ; are the grid distances of the velocity cell
in the generalized zonal and meridional directions, and dau; ; = dxu; ; dyu; ; is the
area of the cell. The grid distance dxun; ; is the zonal width of the north face of
a velocity cell, and dyue; ; is the meridional width of the east face. Note that the
velocity point U; ; is not generally at the center of the velocity cell. Distances are
functions of both i and j due to the use of generalized orthogonal coordinates.

6.4 Kinetic energy in the external and internal modes

We note here a feature of global balances of kinetic energy related to the splitting
of the velocity field into a vertically averaged (external mode) and a deviation from
that average (internal mode). This decomposition prompts an analysis of the global
kinetic energy budget taking the split into account, where we introduce a depth
averaging operator

— 1
V= [ dew (699)
~-H
and deviations from the depth average
p=1p—1. (6.94)

Using this notation, the horizontal velocity is split into its external and internal
modes
u=u"+u. (6.95)

Substituting these velocities into the kinetic energy per unit mass yields
1 ~ ~
Kzi(ﬁz-ﬁz—i—u-u—I—Zﬁz-u). (6.96)

The depth averaged kinetic energy per mass is given by

K= S (@ T 4T ). (6.97)

g
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Note the decoupling of the external and internal modes when vertically integrating.
Hence, the depth averaged kinetic energy per mass can be thought of as the sum of
a contribution from the external mode kinetic energy per mass

1
Kext = 5 u®-u’, (6.98)

and the depth averaged internal mode kinetic energy per mass

T=Z 1 = =z
Kiy = Su-u. (6.99)
In particular, this means that when computing the terms contributing to the evolu-
tion of global kinetic energy;, it is sufficient to take the scalar product of the terms in
the equation of motion with the internal and external mode velocities, respectively,
and then volume average. Notably, surface pressure gradients contribute only to

the external mode energy.

6.5 A caveat regarding the tripolar grid

When running MOM4 with spherical coordinates, the diagnosed energetic balances
discussed in Sections 6.2 and 6.3 are maintained to an accuracy far exceeding the
largest nontrivial term in the equations of motion. Hence, as stated in Section 6.1.1,
energetic balances provide a useful means for diagnosing problems with the dis-
cretization of new algorithms.

The implementation of the tripolar grid leads to a problem with the diagnosed
energetic balances. The problem is solely diagnostic, and so does not represent a
fundamental problem with the prognostic equations. The issue is related to the
need to specify exact agreement between terms computed along the bipolar fold
(see Sections 4.2 and 4.3). Redundancies are handled for the prognostic equations
thus ensuring model stability and self-consistency. However, for the energetic di-
agnostics in MOM4, we have not added the additional calls to the domain updates
necessary to maintain the energetic diagnostics. A debugging tool useful for check-
ing that the energetic balances are maintained in the nonlinear bipolar region is to
simply set land at the j = nj row. Setting debug_tripolar_topog = .true. inside the
namelist ocean_topog_nml will perform this step, thus leading to improved energet-
ics. As this step sets land across the Arctic, it is of relevance only for debugging.
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The purpose of this chapter is to interpret the evolution of total ocean tracer con-
tent. It is noted that a fundamental problem of time filtered leap-frog time stepping
schemes is the inability to exactly conserve total mass/volume and tracer. The com-
putation of global adjustments brings back conservation, but at the cost of nonlocal
effects.

7.1 Introduction

Time evolution of the total ocean tracer is determined by its input through the
ocean boundaries and source/sink terms within the interior. Upon time discretiza-
tion, the definition of total ocean tracer becomes dependent on details of the time
stepping scheme. Furthermore, the introduction of explicit time filters, such as the
Robert-Asselin filter used with the leap-frog scheme or time averaging used in the
MOM4 explicit free surface method, alters the evolution of total tracer in a non-
conservative manner. The goal of this chapter is to precisely define what we mean
by total ocean tracer content in light of time discretization details.
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7.2 Continuum model budget

Before discussing the discrete issues, let us review the continuum results. The total
ocean tracer mass is given by

My = / (pdV)T. (7.1)

Note that for a Boussinesq fluid, tracer concentration remains a scalar if it is inter-
preted as the tracer mass per volume of a water parcel, since volume is a scalar for
Boussinesq fluids. In this case, the total tracer mass for a Boussinesq fluid is given
by Mt = p, [dV T.

Time evolution of the total tracer mass is determined by sources and sinks of
tracer within the fluid and at the oceanic boundaries. Using the mass and tracer
budgets given in Chapter 3 leads to

0t Mt = 0; </(pdV) T>
:/dA ((pT)znn,t+/dZ (pT),t)

—H

= /dA (T(pn,t—poﬁ-V)—ﬁ'pF)+/(pdV)5

250 (7.2)
_ /dA (prqw N-pF)+/(pdV)8
z=n
— [ aa (prqw—ﬁ pF)+/(pdV)S
z=n
=~ [dapar+ [(pav)s,
z=n

where we used the surface kinematic boundary condition, assumed zero flux through
the solid boundaries and/or periodic lateral boundary conditions, and set the sur-
face tracer flux equal to that coming in from boundary layer model.

7.3 Discrete Boussinesq rigid lid budget

We start our considerations of the discrete budget by focusing on the simplest case,
that being the rigid lid Boussinesq ocean with no surface fresh water fluxes. In this
case, the volume of all model grid cells is constant in time. We also drop interior
source/sink terms and set N = 2, both for purposes of brevity.

The thickness weighted tendency for tracer concentration at a depth k is given
by (see [ ] for a derivation)

0t (hT)y =~V - (huT+hF"), — [(wT+F*), , — (wT+F?),], (7.3)

where w,;, = 0 for the rigid lid. Integrating over the total model volume cancels the
horizontal fluxes so long as there are no tracer sources, such as geothermal heating,
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at the solid boundaries. The volume integrated vertical flux convergence reduces to
an area integral of the surface tracer flux. Hence, exposing some model grid fields
and discrete indices leads to the time tendency

0, ( S datdht T) = — lzjdut Qr = — iZjdatQtf”b (7.4)

ijk

where dht; . is the tracer cell thickness, dat; ; = dxt; ;dyt; ; is the horizontal area
of a tracer cell, and indices are exposed only when needed. Multiplying both sides
by the constant density p, renders the budget for total tracer mass in the rigid lid
Boussinesq fluid.

The balance (7.4) takes on various forms depending on how time is discretized.
Following the approach in MOM, we introduce a leap-frog time stepping scheme
for the tendency of tracer concentration

z dat dht T(t + AT) = Z dat dht TR(T — AT) —2AT z dat Qr, (7.5)
ijk i,jk 1,]

where
TR(T — A1) = T(1 — A1) + («/2) [T(1) — 2T (7 — AT) + TR (1 = 2A7)]  (7.6)

is a Robert-Asselin time filtered version of the lagged tracer concentration (e.g.,
[ ). A weak form of such filtering, with & ~ 0.01 —
0.05, has been found sufficient to suppress much of the splitting between the two
leap-frog branches in MOM4.! However, it is notable that the use of a time fil-
ter compromises the conservation properties of the model. Namely, it alters the
tracer content at each grid point, yet is not associated with a physical source/sink
of tracer. We now discuss this point further.
To reduce clutter, introduce the following expression for domain integrated
tracer mass
T(1) = po Z dat dht T(7), (7.7)
ik

and area integrated surface tracer flux

F(1) = —po Zdat Qr, (7.8)
L]

with positive F indicating tracer added to the ocean domain. 7 represents the total
mass of tracer if T represents mass per volume, or the total ocean heat divided by
C, if T is the potential temperature 8. The budget for total tracer mass now takes
the more tidy form

T(t+ A1) = TR(1 — A1) + 2 A7 F (7). (7.9)

ITime series of prognostic variables, sampled every time step, will generally still show time noise
even with the presence of the Robert-Asselin filter. The noise is most apparent in regions where
temporal variability is strong, such as the equatorial currents. The researcher should judge the level
of noise acceptable for the solution, balanced by the desire not to overdamp the transients by using a
very large filter coefficient.
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Because of the Robert time filter, tracer mass at T + At does not equal that at T — At
plus that input through the ocean surface. That is, time filtering compromises the
discrete balance of total ocean tracer mass. It is as if the flux input via the surface
term F(7) were modified, with the magnitude of the modification depending on
the amount of time filtering applied. This is not a satisfying situation. Yet it is a
necessary consequence of using the time filtered leap-frog scheme. Such will also
be the case with the free surface, where there is a time filter applied to both the
tracer and surface height, thus further compromising the integrity of the conserva-
tion properties. Two-time level schemes, such as predictor-corrector, avoid these
problems via the use of implicit time dissipation, and so are preferable from the
present perspective. Yet we will have more to say on two-time level schemes in
Section 7.6.

To pursue this point a bit further, consider the special case of zero surface tracer
flux for all time, for which case

T(t+ A1) = TR(1 - A1), (7.10)

Hence, there is an apparent time evolution of total tracer content even when there
are no surface fluxes. However, upon assuming 7 constant for all earlier time steps,
one can show inductively that 7 remains constant for all future time steps. As
shown in the next section, the nonlinear product of the time dependent surface
thickness and time dependent tracer concentration, in the presence of separately
applied time filters, leads this conservation statement to be compromised with a
free surface.

7.4 Discrete non-Boussinesq free surface budget

To garner a budget for total tracer mass in the discrete non-Boussinesq free surface
model, we first integrate the tracer budget over the ocean domain and drop bound-
ary terms at solid walls, and use the surface cell budget derived in [ I
In particular, the budget for a surface cell is given by

(po)_l 0t(phT),, =—-V- (huT—|-hFh)Z1 + (0 T)z + o To] + [FZ . ngcurb)],
(7.11)
and for interior cells with k > 1

(po)il at<ph T)Zk ==V (hu T+ hFh)Zk + [(w T)Zk - (w T)qu] + [F.?k - F;kil],
(7.12)
where we dropped source terms for brevity. When integrating over the global do-
main, the horizontal convergence terms drop out due to no-flux side boundary con-
ditions. The vertical fluxes collapse to surface and bottom boundary terms. Focus-

ing on surface fluxes, we have

0; (Z datdhtpT) = F(1), (7.13)
ik

with dht = h the thickness of the tracer cells, and the area integrated surface tracer
flux is determined by fresh water and turbulent fluxes of tracer

F(t) = po y dat [qw Tw — QF"]. (7.14)
)
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Performing a leap-frog time step on the thickness weighted tracer concentration
leads to the conservation statement

T(t+ A1) =T(t— A1) + 2AT F (1), (7.15)
where
T(t)= z dat dht(t) (pT)(7) (7.16)
ik

is the domain integrated tracer mass,

(pT)(7) = p(7) T(x) (7.17)

is the density weighted tracer concentration, and time filtering is briefly ignored.
This conservation statement has the same form as that for the rigid lid. In both
cases, the use of time filters compromises our familiar interpretation of the dis-
crete time budget for total tracer. Additionally, because thickness must be time
stepped separately from the thickness weighted tracer, time filtering is also ap-
plied separately. Hence, upon introducing time filtering, the nonlinear product
of thickness times tracer concentration further compromises the integrity of the
conservation statement. No such issue arises with density, and hence total ocean
mass, since its time stepping is diagnosed by the extrapolation method described
in [ ]and [ ].

7.4.1 Separate time stepping for tracer, density, and thickness

We dissect this result a bit further by separately considering the leap-frog time step-
ping of density, tracer concentration, and thickness

> dot (dht(x) (0 T) (r+ &) — (o) = &)
L]

+ (pT)(7) [dht(T + AT) — dht(T — AT)]> =2AT F(7). (7.18)

This time discretization has the same accuracy as when discretizing the product
hpT as a single object. However, the conservation statement is a bit more compli-
cated in the present approach, as seen in the following. Note that dht(t + A1) —
dht(t — A1) is nonzero only for the surface grid cell. However, for purposes of
symmetry, it is useful to keep it around for all depths.

To proceed, rearrange the previous result and indicate where the time filtered
fields are used in the model’s time stepping.

> dat <[dht(fr) (pT)(t+ At)+dht(t+ A7) (pT)(7)]
ik

— [dhtf (T — AT) (p T)(7) + dht(7) p(T — AT) TR (7 — AT)]) =2AtF(1), (7.19)

where there is no time filtering applied to the density field since it is updated via an
extrapolation method. Furthermore, as detailed in [ ], the time filtered
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ocean surface height takes the form of a time average over the barotropic cycle

__ 1 N

nf (1) = n® (1) = NI nZo n®(t - A1, t,). (7.20)

To isolate the effects of time filtering on the tracer content, we find it convenient
to write

-Zk dat [dht(T) (p T) (T + AT) + dht(T + AT) (p T)(7)]
" - z',]z,k dat [dht(t — AT) (pT) (1) + dht(t) (p T) (T — AT)]
+ Y datdht(t) p(t — AT) [T(7 — AT) — TR (1T — AT)]
+]kz dat p(7) T(7) [dht(T — AT) — dht (T — AT)]
o _2ATF(r). (721)

To bring this equation into a more tidy form, define the two-time level tracer mass

27 (1,7 + At) = 5 dat[dht(7) (pT)(T + At) + dht(t + A1) (pT)(7)] (7.22)
ik

and the time filtered form of this mass

27 (1,74 A7) =

> dat [dnt" (1) p(T + AT) T(T + AT) + dht(T + A1) p(T) TR(7)], (7.23)
ik

thus bringing the conservation statement (7.21) to the form
T(1,T+AT) =T (1= AT, T) + AT F (1) + [TH (Tt — A1, 1) — T (1 — A1, 7)]. (7.24)

This result leads to the following interpretation: consider 7 (7, T + A7) as centered
at T+ At/2 and 7 (T — A7, T) centered at T — At/2. Equation (7.24) then says
that a leap-frog time step At links the two half-time step total tracer mass; Figure
7.1 provides an illustration. The difference 77 (1 — A1, 1) — 7 (T — AT, T) acts as a
source/sink in addition to the physical source/sink At F (7). The size of this time
filtering source can be nontrivial in some situations.

7.4.2 Concerning the tracer and baroclinic time steps

As discussed in [ ], the free surface height is time stepped using a
“big-leap-frog” at the end of the small barotropic sub-cycle. Consequently, it is
natural to update the free surface using the baroclinic time step. However, the
rearrangement used to reach equation (7.19) assumed the same time steps were
used to update tracer and volume. Without equating the two time steps, we cannot
identify a total ocean tracer content. This result is to be expected for the following
reason. The undulating surface height (and undulating volume) closely couples the
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tracer and mass/volume budgets in the surface grid cells, necessitating the use of
equal time steps to maintain a self-consistent time stepping so that tracer mass can
be conserved.

In[ Jand [

it was assumed that the surface height would always be updated using the baro-
clinic time step. However, tests in MOM4 indicate that the time stepping scheme for
the surface height is stable enough to allow 7 to be updated using the tracer time
step. Hence, even for those coarse resolution models where tracer time steps are
typically much larger than baroclinic time steps, it is possible to maintain compati-
bility between the volume and tracer budgets. The usual tricks for quickly spinning-
up coarse resolution ocean models ([ ,

]) are therefore still
available with the MOM4 free surface, all while maintaining volume and tracer
compatibility. Conservation, however, is still compromised due to the time filter-
ing.

7.4.3 MOM4 diagnostics for tracer mass

Equation (7.19) represents a simple rearrangement of the discrete equations as they
are implemented in the ocean model. Hence, the two sides should be equal even if
they are evaluated separately. However, in the development of various algorithms,
it has proven extremely useful to separately diagnose the two sides of this equation
and verify that they are indeed equal, to within some value determined by roundoff
errors. Notably, if the tracer and volume budgets are updated using a different time
step, this diagnostic reveals the extent of the associated tracer non-conservation.
Such is part of the tracer-change diagnostic in MOM4.

In addition to checking the left and right hand sides of equation (7.19) over a
single time step, it is important to check how well the ocean inputs the tracer fluxed
through its surface over a period of time. That is, does the tracer content at some
given time equal to that at an earlier time plus the total tracer input through the
surface during the intermediate times? We already answered this question in the
negative for the rigid lid, in which case the mis-match arises from the use of time
filters. The negative answer applies also for the free surface, again because of time
filters as seen by equation (7.24). We now consider details in order to formulate the
MOM4 diagnostic which determines the magnitude of the mis-match.

For this purpose, sum equation (7.24) over a finite time N AT to obtain

T(t+NAT, T+ (N+1)A1) =T (1, 7+ A1) + AT % F(t+ nAt)
n=1
+ % [THt+(n—1)At, 1+ nAT) —T(t+(n—1)At, T +nA1)]. (7.25)

n=1

A useful means to define an error due to time filtering is to convert to a flux. We do

]
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AT AT AT AT AT At

P Y Y Vo N N

T:]JZ 1+3/2 . T:5/2 o T:7/2 o 92 o T11/2 1413/2

T+1 ?

? 2 3 TH4 45 116 57

2AT 2T 2AT 2T 2T 2T

Figure 7.1: Schematic of time stepping for tracer concentration and total tracer mass
in the case where N = 6. The lower branch shows the N over-lapping 2AT leap-
frog steps used for updating the tracer field. The upper branch shows the N time
steps of length AT moving the total tracer mass over the half-integer T levels. Note
that the increments for T are in units of At.

this in two ways. First, compute an effective flux due to the filter

1
error(l) = <NATA> X

% [THr+(n—1) AT, T+nAT) —T(t+ (n—1) A1, T+ nA1)] (7.26)

n=1

where A = ¥ dat is the total tracer cell area at the ocean surface. Second, compute
an effective flux

1
error(z) = (NATA) X
N

[7(t+ NAT, T+ (N+1)AT) = T(7, 7+ A1) — AT ) F(T+nAt)] (7.27)

n=1

where ideally we have
ErTor(1) = error(y). (7.28)

Differences can be interepreted as due to numerical roundoff. Note that for po-
tential temperature, multiplying by C, yields an error with units Watts per square
meter. For other tracers, the error is in units of kilograms per second per meter
squared. The magnitude of these errors is dependent on the model configuration,
the frequency at which surface forcing is altered, the level of time filtering, and the
time interval over which the diagnostic is computed.

Figure 7.1 illustrates the time steps involved in integrating tracer concentra-
tion and the implied integration of total tracer mass. Total tracer mass is cen-
tered on the half-time steps and is moved forward At upon each 2AT leap-frog
update of the tracer concentration. Assuming knowledge of the tracer, density,
and thickness fields at times 7 and T + A7, we can diagnose the total tracer mass
T(t, 1+ A1) = T(1+ A1/2). The N = 6 time steps used to move from 7 (7, T +
AT) to T (T + 6AT, T + 7AT) require the surface tracer flux over the six time steps
F(T+nAT)=14.

—
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7.5 Global adjustments to recover conservation

The absence of global conservation is a very unsatisfying aspect of the time filtered
leap-frog and explicit free surface methods. As discussed in [

some cases may be fine. Various attempts have been made to recover conservation.
We outline here some approaches that were tried, but with less than successful re-
sults.

7.5.1 Boussinesq volume budget

To start, let us consider the Boussinesq volume budget, as given by a discretization
of the free surface height equation

0in=—-V-U+ge. (7.29)
The time filtered “big leap-frog” step which updates 7 is given in the model by
(T4 A1) — nf (1 — A7) — Ay =247 (=V - U +qy) (7.30)

where the time averaged surface height n" is given in equation (7.20). The term A,
is an term added to recover global conservation of volume. It is hoped that such
can be a global constant which vanishes when there is no time filtering. Indeed,
such is possible with the following serving our needs

Zzjdm‘ [n(t — At) — nf (1 — AT)]

Ay = - 5 dat : (7.31)

ij

With this definition, we are led to the global integrated volume balance
> datn(t+At) = datn(t — AT) +2A7 y dat q. (7.32)
0] 0] 0]

Notably, the time filtered surface height nf (T — A1) dropped out of the balance.
Hence, we are left with a proper conservation statement, where the global integral
of the new surface height equals to the integral of the old height plus the integrated
fresh water forcing. Hence, at least for volume budget, a single global constant,
added to each of the surface heights, can bring back the usual balance of global
volume.

7.5.2 non-Boussinesq mass budget

From | ], the semi-discrete budget for mass over a column of fluid
takes the form

Pz, atn+zhk6tpk=po(—V‘U+qw)- (7.33)
Discretizing in time leads to
pz, () [n(T+ A1) = nf (1 — AT) — Ay )] +2AT > dhti(T) 0r pi(T)
3

= 2ATp, [~V - U(T) + gu(1)]. (7.34)
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To recover total mass conservation, we define the constant adjustment

> dat pz, (1) [n(t — At) — nf (1 — AT)]

Agon) = 2 (7.35)

> Pz (T)dat
L]
To verify mass conservation, let us integrate over the globe to find

z dat p,, () [dht1 (T + A1) — dhty (T — AT)]| + 2 AT z dat z dhty(T) 0¢ pr(T).
Lj

=2ATp, Z dat g, (1), (7.36)
L]

with dht; = n+ Az the upper cell thickness. With the time tendency 0; p(7) dis-
cretized as discussed in [ ], this global budget is a proper discretiza-
tion of the continuum budget. To add some symmetry to this result, we add zero
in the form dht(t + A1) — dhty(t — A7) for k > 1. Doing so, and discretizing the
density tendency, leads to

z dat z 0z, (T) [dhty (T + AT) — dhty (T — AT)]
+ z dat Z dhty(7) [pk(T + AT) — pr(T — AT)] =2 AT p, Z dat g, (7). (7.37)
1 L]

As discussed in [ ], the density is time stepped via an extrapolation
method introduced by [ ]. It there-
fore has no time filtering. Rearrangement leads to the discrete conservation law

Z dat Z (02, (T) dht (T + AT) + p2 (T + AT) dhty(T)]
]

= Z dat Z 2, (T — AT)) dhty(T) + pz, (T) dhty(T — AT)] + 2 AT p, Z dat g, (T).
% 07
(7.38)

Introducing a total mass with two time levels

2M(t, T+ A7) Z dat Z (02, (T) dhty (T + AT) + p, (T + AT) dht(T)].  (7.39)

leads to the discrete total mass conservation law
M(T, T+ AT) = M(T = AT, T) + ATp y dat 4o (T). (7.40)
L]

As for the volume conservation, we are able to recover discrete mass conservation
by adding a global constant which vanishes upon removing the time filtering.
7.5.3 non-Boussinesq tracer budget

The semi-discrete tracer budget for the surface cells was given in Section 7.4. We
repeat it here for completeness

0u(hpT)y = —po V- (HuT+RF)., + po [(WT)e, +qu T + po [F5 — QF™)].
(7.41)
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The budget for interior cells with k > 1 is given by
0:(phT)y = —po V- (huT+hE"), +pp [(wT)y — (WT)z ]+ po [FZ —FZ ]

Zk—1

(7.42)
Time discretizing the left hand side of the surface budget leads to

(2A7) 0 (hpT)zy ~ dht, (1) [(pT) (T + AT) = (pT)" (T = AT) = A2,

+ (pT)z, (1) [dht(T + AT) — dhtf (T — AT) — Al )z (7.43)

In this equation

(pT)X (1 — A1) = p(T — AT) TR (1 — A7) (7.44)
is the density weighted Robert time-filtered tracer concentration. The surface height
adjustment A, ) is defined by equation (7.35). As for volume and mass, we hope
to define the density weighted tracer adjustment Af; 7) to ensure conservation of

global tracer mass. We are motivated to define this adjustment as a function of
depth, since most of the time filtering is applied to the upper ocean, where tempo-
ral variability is largest. To remove time filtering in the area integrated budget for
the surface cells, we set

Sijdatdht(t) [(pT) (7 — A7) — (p T)" (1 — AT)];,
> jdatdht;, (1)
s ;dat (pT)(7) [dht(T — AT) — dht" (T — AT) — A ]2,
* vijdatdht; (T)

Apr) =

(7.45)

As the interior cells with k > 1 have time independent volumes, the interior
tracer budget has a discrete time tendency

(2A7)0;(hpT)z, =~ dht, (1) [(pT)(T+ AT) — (pT)X (T — AT) — A(pr))z.  (7.46)

For these cells, we remove time filtering from the area integrated budget by setting

3 datdht; (1)[(pT)(7 — A1) — (pT)* (7 — AT)];,
Yijdatdht; (1)

A'(Z;T) = (7.47)

Use of the adjustments A, ;) and AZ‘) 7 leads to the discrete tracer budget over
the surface cell

dht., () (pT)(7 + AT) = dhte, (1) [(0T)R (v — A7) + A,
— (pT),,(7) [dht(T + AT) — dhtt (T — AT) — Az
+ (2 A7) (—po V- (huT+hE"),, 4 po (@ T)zy + o To) + 0o [FZ — Q(Tt“rb)]>
(7.48)
and the interior cells with k > 1

dht, (1) (p T) (7 + A7) = dht, (1) [(0T)F (7 — AT) + A5

+a0) (<0, T (T 4R, 4, (0T — (0T [+ o~ ).

Zk—1

(7.49)
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Assuming all fluxes through solid-walls vanish, we are led to the global tracer bud-
get

Z dat ; dht, () [(pT)(t+ A1) — (pT) (T — AT)]
]

+3 dat (pT)(1)z, [dhts, (T + AT) — dhts, (T — AT)]
L]

=2A7p, 3 dat[gu(7) Tu(T) - QF"™(7)]. (7:50)
L]

Since the cells in the interior are time independent, we can add zero via the differ-
ence dht,, (T + A1) — dht,, (T — A7) to yield the equivalent result

Z dat ; dht, () [(pT)(t+ A1) — (pT) (T — AT)]
L]

+ Y dat  (pT)(7)z[dhtz (T + At) — dht;, (T — AT)]
77 ;

=2A7p, 3 dat[gu(7) Tu(T) - QF™ ()] (751)
L]

Rearrangement leads to the conservation statement

Z dat %y |dht;, (1) (pT)(T + A1) +dht;, (1 + A7) (0 T)(7)]
1,] k

= Z dat Z [dht, (1 — A7) (pT) (1) +dht, (7) (p T)(T — AT)]
L]

+2A7p, Y dat [qu(T) Tu(T) - Q') (1)) (7.52)
1]

Using the two-time level tracer mass notation from equation (7.22), we are led to
the balance
T(t,t+AT)=T(1— A1, 7)+ ATt F(71), (7.53)

where the surface flux F(7) is given by equation (7.14).

7.5.4 Comments on global adjustments

The adjustments to the surface height and the density weighted tracer concentra-
tion are sufficient to render a discretely exact global conservation for mass and
tracer content. Likewise, note that the adjusted tracer and surface height equations
are self-consistent, in that if the density weighted tracer concentration everywhere
was set to a constant, then the tracer budget would reduce to the volume bud-
get. This self-consistency means, for example, that a wind blowing across an ocean
with uniform tracer concentration will not set up spurious gradients in the tracer
concentration. [ ] fur-
ther discuss this point.

There are two notable problems with having a global adjustment required to re-
cover conservation. First, it requires the computation of a global sum for each time
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step and for each depth. Such is cumbersome on parallel computers, and can ren-
der the method inefficient. Second, the method alters prognostic fields in a nonlocal
manner. Although we chose to decouple the vertical levels, the horizontal remains
nonlocally coupled. That is, time filtering necessitated by temporal variability in
one horizontal region instantaneously affects the values of fields in other horizon-
tal regions. Such is clearly nonphysical. Just as we suggested for the vertical, we
can limit the extent to which horizontal nonlocality applies, by introducing distinct
adjustments over different prescribed horizontal regions. However, the limit where
the region goes to a point will, of course, remove time filtering altogether, and so
recover problems with leap-frog splitting. So horizontal regional adjustments must
be considered with care.

7.6 Comments on three versus two time level schemes

We pointed out in this chapter some fundamental problems with tracer conserva-
tion using the three time level leap-frog scheme. Again, the problem arises when
applying some form of time filtering, either the Robert-Asselin filter to the tracer
concentration (7.6) or the barotropic time average applied to the free surface (see
[ ]). Such time filters act to borrow from the past and future to alter
the present. Doing so in the presence of nonlinear products of time filtered prog-
nostic variables leads to problems with conservation that can only be overcome by
prescribing some global adjustments.

The problems identified here prompt some comments regarding the utility of
two time level schemes, many of which are common in ocean models (see [
for a summary). These comments should be considered speculative, since we have
not under-taken a systematic investigation of the issues. Nonetheless, they are pre-
sented in hopes that they highlight certain relevant points.

Let us first summarize the issues arising with the leap-frog. Because tracer is
time stepped via a leap-frog, it is necessary to also update surface height with a
leap-frog using the same time step. Otherwise, the discrete volume and tracer bud-
gets would be incompatible and there would be no way to form a discrete analog
of total ocean tracer content which undergoes a physically relevant time evolution,
even in the absence of time filtering. When the volume and tracer budgets are com-
patible, non-conservation of total tracer content still arises when applying a time
filter to both the tracer and the surface height, with tests indicating that both con-
tribute roughly an equal amount to the non-conservation. Additionally, due to the
tendency for the surface height to generate noise when time stepping the split equa-
tions on the B-grid, it has proven essential to compute the filtered surface height
contribution using the time averaged surface height from the previous and future
time steps. Note that this computational mode is absent on the C-grid, thus moti-
vating its use for discretizing gravity waves. However, C-grid models suffer from
a computational mode associated with the Coriolis force, and such is nontrivial to
damp in a conservative manner. See [
for a review with suggestions.

Two-time level predictor-corrector schemes contain time damping applied in a
semi-implicit manner. Hence, there is no need to employ a Robert-Asselin time fil-
ter. Careful discretization in the C-grid Hallberg Isopycnal Model [ |
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allows for an exact conservation of total tracer if the predictor-corrector is applied
to the tracer fields as well as within the barotropic sub-cycle. The surface height
that is used to maintain conservation is driven by the barotropically time averaged
vertically integrated transport.

In an attempt to see whether a two-time level scheme is warranted for MOM,
we implemented a predictor-corrector approach for the barotropic system (similar
to Hallberg’s), yet maintained the leap-frog for the tracer and baroclinic velocity.
Unfortunately, the model was very unstable, likely due to the B-grid computational
mode, unless a time averaged surface height was incorporated at some stage in the
barotropic algorithm (see [
for comments on such instabilities). Yet the use of time averaging no longer allows
for exact tracer conservation, even if the tracer equation is changed to a predictor-
corrector. Hence, we have found little motivation in modifying the leap-frog scheme
in the B-grid MOM. Conversion to a C-grid may lead to more positive results, so
long as the Coriolis null mode does not then become pernicious ([

Even with the rigid lid, a leap-frog compromises the total tracer conservation.
Short of a fully two-time level scheme, it has been common to remove the leap-frog
splitting mode by periodically applying a two-time level Euler step instead of us-
ing a time filter. Extensive experience with this approach has prompted modelers to
abandon the use of such special-time step “tricks”, largely due to subtleties related
to vertical adjustment processes (see [
for a review and references). A predictor-corrector for a rigid lid B-grid model thus
makes more sense, because the issues of stabilizing the free surface are no longer
relevant and all time steps are treated the same. Because the rigid lid is not suit-
able for other reasons (e.g., [ 1), there has been no attempt to see how
useful a two-time level B-grid MOM would be.
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Vertical physics and transport
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NUMERICS OF VERTICAL PHYSICS

Vertical physics is relatively simple to implement in a z-coordinate ocean model.
Nonetheless, we find it useful to discuss some issues relevant to the implementa-
tion of vertical processes in MOM4, and so present salient issues in this part of the
MOM4 Guide.
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The purpose of this chapter is to discuss the numerical implementation of short-
wave heating. Sensitivity of the ocean solution to the penetration of shortwave ra-
diation into the ocean column can be quite large. Penetrative shortwave heating is

implemented in MOM4 via the tracer source array.

This chapter, especially Section 8.3, benefitted from contributions by Colm Sweeney

(cos@gfdl.noaa.gov).

8.1 General considerations and model implementation

Solar penetration brings solar shortwave heating downward in the ocean column,
thus providing a heating at depth. The parameterization of the oceanic absorption

of downward solar radiation is generally written as

I(x,y,2) = Io- (x,y) F(2),

(8.1)

where I, in units of W m~2, is the total shortwave downwelling radiative heating
per unit area incident at the earth surface, and F(z) is a dimensionless attenuation
function. Note that the total downwelling radiation Ij- is to be distinguished from
the total shortwave heating Iy, where I)- = (1 — «) Iy, with a ~ 0.06 the sea surface

albedo.
Shortwave heating affects the heat budget locally according to

(pT) = —(po/cp) 0z (cp F* = 1I).

(8.2)
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In this equation, F* accounts for vertical processes such as advection and diffusion,
cp is the heat capacity of seawater, p is the in-situ density which for a Boussinesq
fluid is set to the Boussinesq reference density p,.

Shortwave heating leads to the following net heat flux over a column of ocean
fluid

(o/cy) [ dz0:1= (po/cp) [1(n) ~ I(~H)]. 63
—H

where I(n) is often approximated as I(0). We assume there is no shortwave heating
of the solid rock underneath the ocean fluid, so I(z = —H) = 0 is appropriate,
with this boundary condition set via masks in MOM4. Although the expression
(8.5) suggests the upper boundary condition I(0) = I-, we must be careful to not
double-count the shortwave source in MOM4 since it is typically also carried as
part of the surface temperature flux array stf. We now present the two approaches
available in MOM4.

The vertical convergence of penetrative shortwave radiation, (p,/cy)0: I, is in-
corporated into MOM4’s potential temperature equation via a source term. Addi-
tionally, it is typical to include the total downwelling shortwave heating I,- within
the surface flux array stf, where other forms of heating such as those from latent
and long-wave affects are also incorporated. Hence, for proper accounting of the
shortwave heating, the upper boundary condition for the irradiance function must
be specified as

0 if I- is already included in st
I(n) = { 0 y / (8.4)

Iy-(x,y) if Iy~ is NOT already included in stf.

The typical practice at GFDL is to set I(1) = 0 since Iy- is already included in st f.
Care should be exercised by those using the opposite convention.

8.2 The Paulson and Simpson (1977) irradiance function

[ ] classified water into five types according to its optical properties,
which determines the extent that solar radiation penetrates into a vertical fluid col-
umn. For example, clear water allows for deeper penetration, whereas mirky water,
as occurs in the presence of active biology, more rapidly attenuates the radiation.
Studies by [ | then suggest a form for the attenuation
function F(z) based on the optical properties of water.

The parameterization of solar shortwave absorption of downwelling solar radi-
ation used by [ lis given by the [
form

I(%,v,2) = Io- (x,y) [Re5 + (1 R) /%], (8.5)

where Ij- is the total shortwave downwelling radiative heating per unit area inci-
dent at the earth surface, 1 and ¢, are attentuation lengths and R is an empirical
constant dependent on the optical properties of the water. In the [

study, they chose R = 0.58, {; = 0.35m, and {; = 23m, corresponding to Jerlov
Type I water (clear water). This is the form of shortwave penetration originally im-
plemented in MOM. However, MOM4 now implements the scheme discussed in
Section 8.3.
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8.3 Shortwave penetration based on chlorophyll-a

This Section was contributed by Colm Sweeney (cos@gfdl.noaa.gov).

Recent investigations with solar penetration have indicated a strong sensitivity
of ocean simulations to how light penetrates into the ocean and warms the upper
few tens of meters. This section describes recent work at GFDL whereby the use
of a spatially and temporally dependent penetration depth is specified according
to climatological chlorophyll data. Although this data is taken from a climatology,
its use is believed to be preferable, even for climate change simulations, to the use
of a space-time independent optical type. Research into bio-optical influences on
ocean climate remains an active area, and the methods presented here remain under
investigation by various groups.

8.3.1 Solar penetration in the ocean

Observations and models describing the distribution of solar radiation with depth
in seawater have demonstrated that nearly all (99.9%) of the downwelling infrared
radiation (wavelengths of 750nm-2500nm) is absorbed in the upper 2 meters of the
ocean. While variability in the penetration depth of long wave radiation has large
implications for skin temperature and surface layer heat fluxes, this IR radiation
has little effect below the surface over the depths (roughly 10 m) used in present
day ocean models ([ 11 D).

In contrast, attenuation of shortwave solar radiation (wavelengths < 750nm) is
both spatially and temporally variable at scales important to ocean climate models.
In waters with high particulate and dissolved organic matter concentrations, the
1% light penetration depth can be less than 10 meters while in the clear, biologically
unproductive waters of the subtropical gyres, solar radiation can directly contribute
to the heat content at depths greater than 100 meters.

Previously, ocean climate models have parameterized the penetration of light
into the ocean by identifying six water types distinguished by the ”“clarity” of the
water ([ ]). This method is described in Section 8.2.
More recently, the correlation between chlorophyll pigment concentrations and
short wave penetration depths has enabled us to parameterize shortwave pene-
tration of solar radiation with satellite observations of ocean color ([ ],
[ 1,1 ]). By assimilating satellite
observations of ocean color (e.g., SeaWiFS, OCTS, MODIS), it is possible to more ac-
curately simulate the spatial and temporal variability of penetrating radiation.

832 [ ] shortwave penetration model

Present modeling work at GFDL (Spring 2003) makes use of a parameterization de-

veloped by [ ]. This scheme was explicitly developed for
large-scale ocean models with coarse depth resolution (i.e., grids with Az > 5m).
[ ] expand the exponential function used by [

into three exponentials to describe solar penetration into the water column.

The first exponential is for wavelengths > 750nm (i.e., I;r) and assumes a single
attenuation of 0.267meter with a solar zenith angle 8 = 0. At present we assume
that the solar zenith angle stays constant throughout the daily integration of the
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model. Thus, the resulting equation for the infared portion of the downwelling

radiation is:
IIR(x/ }// Z) = IIR’ (x/ 3/) e_Z/(O.267C056) (86)

where again 6 = 0. This relationship assumes z is the depth in meters and that
I1r- (x,y) is a fraction, of the total downwelling radiation, I- such that

Iir-(x,y) = Fir Io- (8.7)

and
Fir + Fyis =1 (8.8)

where Fig and Fy;g are the fractions of infared (750nm to 2500nm) and visible
(300nm to 750nm) radiation downwelling from the surface ocean. Although [
note that water vapor, zenith angle, and aerosol content each can effect the frac-
tion of incoming radiation that is represented by infared and visible light, in the
present implementation we have chosen to keep these fractions constant such that
Fir = 0.46.

The second and third exponentials represent a parameterization of the attenua-
tion function for downwelling radiation in the visible range (300nm -750nm) in the
following form:

Tyis(x,y,2) = Iyis-(x,y) (V1 €5/ + Ve @), (8.9)

This form further partitions the visible radiation into long (V1) and short (V) wave-
lengths assuming
Vi+Vo=1. (8.10)

Vi, Vo, ¢1 and ¢, are calculated from an empirical relationship as a function of

chlorophyll-a concentration using methods from [ ]. Through-

out most of the ocean V; < 0.5 and V, > 0.5. The e-folding length scales (;
and (, are the e-folding depths of the long ({1) and short visible and ultra vio-
let (o) wavelengths. Based on the chlorophyll-a climatology used in the GFDL
models, ¢; should not exceed 3m while ¢, will vary between 30m in oligotrophic
waters and 4m in coastal regions. All of these constants are based on satellite es-
timates of chlorophyll-a plus Pheaophytin-a, as well as parameterizations which
have “nonuniform pigment profiles” ([ ). The "nonuni-
form pigment profiles” have been proposed to account for deep chlorophyll max-
ima that are often observed in highly stratified oligotrophic waters ([

8.3.3 SeaWiFS based chlorophyll-a climatology

A "non- El Nifio” chlorophyll-a climatology was produced from estimates of the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The "non - El-Nifio” climatol-
ogy is based on 8-day composites of SeaWiFS images taken from 1999 to the end
of 2001. The climatology calculates the weighted average chlorophyll-a concentra-
tion on the 15th day of each month considering all data 16 days before, and after
the 15th day of each month. Each 8-day composite is assigned a gaussian (alpha =
2.5) weight based on its proximity to the 15th day of each month. This data set is
available from the GFDL NOMADS server where MOM4 datasets are distributed.

D
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The purpose of this chapter is to present the vertical adjustment schemes avail-

able in MOM4.

9.1 Introduction

The hydrostatic approximation necessitates the use of a parameterization of ver-
tical overturning processes. The original parameterization used by Bryan in the
1960’s was motivated largely from ideas then used for modeling convection in stars

([

1). Work by Marshall and collaborators ([
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[ ]) have largely indicated
that the basic ideas of vertical adjustment are useful for purposes of large-scale
ocean circulation.

The [ ] implementation of convective adjustment (the “NCON”" scheme)
may leave columns unstable after completing the code’s adjustment loop. Vari-
ous full convective schemes have come on-line, with that from [ ]
implemented in MOM4. An alternative to the traditional form of convective ad-
justment is to increase the vertical mixing coefficient to some large value (say >
10m? s~ 1) in order to quickly diffuse vertically unstable water columns. Indeed, it is
this form recommended from the study of [
and it is the approach commonly used in mixed layer schemes such as [
and [ ].

9.2 Summary of the vertical adjustment options

The handling of gravitationally unstable water columns in MOM4 can happen in
one of two basic ways.

e Implicit vertical mixing: By setting the namelist parameter aidif = 1.0, all
vertical diffusion is handled implicitly. There are two approaches depending
on the vertical mixing scheme used.

1. When using the constant vertical mixing module, the vertical diffusiv-
ity is set to a maximum value determined by a namelist dif f_cbt_limit
upon reaching a gravitationally unstable situation. dif f _cbt_limit = 10.0
(MKS) is a typical value.

2. When using the Pacanowski and Philander or KPP vertical mixing scheme,
both the vertical diffusivity and vertical viscosity are set to the namelist
settings dif f cbt_limit and visc_cbu_limit upon reaching a gravitationally
unstable situation. dif f _cbt_limit = visc_cbu_limit = 10.0 (MKS) are typ-
ical values.

e Convective adjustment: There are two convective adjustment schemes in MOM4.

Both schemes act only on tracers when mixing. The default is the full convect
scheme of | ]. The alternative scheme is the older one from
[ ] and is known colloquially as the “NCON scheme”. The NCON
scheme has been implemented in mom4.0 for legacy purposes and is not rec-
ommended for new models.

9.3 Concerning a double application of vertical adjustment

Whether solving the vertical diffusion equation implicitly (aidif = 1.0) or explic-
itly (aidif = 0.0), it is possible to use convective adjustment. To avoid a double
application of vertical adjustment, one should keep in mind the following points.
When using neutral diffusion, it is necessary to have aidif = 1.0 for numerical
stability. Hence, vertical diffusion will be computed implicitly in time. For those
wishing to have vertical adjustment applied just via the convective adjustment

]
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scheme, then it will be necessary to set dif f cbt_limit = kappa_h and visc_cbu_limit =
kappa_m. If wishing to adjust via large vertical diffusivities, then set dif f_cbt_limit
to a large value as described above, and set the namelist convective_adjust = . false.

9.4 Boussinesq and non-Boussinesq cases

The treatment of vertical adjustment schemes differs somewhat between Boussi-
nesq and non-Boussinesq formulations in MOM4. We highlight these differences in
this section.

9.4.1 Vertical momentum friction

As mentioned in Chapters 3 and 6 in this document, and more fully discussed
in [ ]Jand [ ], friction is
computed in the non-Boussinesq formulations using the model velocity u” rather
than u, where the linear momentum per volume in the ocean model is given by

pou = pu. (9.1)

Hence, for the non-Boussinesq model, it is u” that is mixed implicitly in time when
using the implicit mixing scheme. There is no distinction between u” and u for the
Boussinesq model.

9.4.2 Vertical tracer diffusion

Asalso treated in [ Jand [
the vertical tracer diffusion equation takes the form

(p T),t = —p, 0, F* 9.2)

where
FF=—«xT, (9.3)

is the downgradient vertical tracer flux. In MOM4, we prefer to separate the density
and tracer concentration prior to temporal discretization, thus to isolate the time
tendency of the tracer concentration

Ti=—(T/p)p:— (po/p) 0-F (9:4)

The density time tendency term vanishes for the Boussinesq case, and the factor
po/p is set to unity. For the non-Boussinesq case, the term —(T/p) p; provides an
added forcing to the tracer concentration, and the p,/p factor modifies the vertical
diffusion operator. The modification to the vertical diffusion operator is considered
in the following sections where we discuss the implicit treatment of this equation
via either implicit vertical diffusion or convective adjustment.
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9.5 Implicit vertical mixing

When the namelist aidif is set to unity, vertical mixing of momentum and tracers is
time stepped implicitly. When aidif = 0.0, vertical mixing is time stepped explic-
itly. Intermediate values give a semi-implicit treatment, although at present MOM4
does not support semi-implicit treatments. An implicit treatment of vertical mix-
ing allows unrestrained values of the vertical mixing coefficients. An explicit treat-
ment, especially with fine vertical grid resolution, places an unreasonable limitation
on the size of the time step. The use of fine vertical resolution with sophisticated
mixed layer and/or neutral physics schemes has prompted the near universal im-
plicit treatment of vertical mixing in ocean climate models.

We now detail the implicit treatment of one dimensional vertical mixing in
MOM4. As discussed in Section 9.4, the tracer equation presents the most gen-
erality through the added p,/p factor seen in equation (9.4), and so we consider the
tracer equation here. For vertical tracer diffusion in the Boussinesq system, and for
the Bousinesq or non-Boussinesq vertical velocity equation, the p,/p factor is set to

unity.

9.5.1 General form of discrete vertical diffusion

We can write the vertical diffusion equation in the discrete form
Gr(T+1) = ¢p(t+1) = Ti(7) (Fy — ). (9.5)
where we introduced the inverse velocity

aidif 2 At
(o (T)/Po) dhtr(T)

which appears quite frequently in the following discussion. The profile ¢; (T + 1)
represents the tracer at the updated model time 7 + 1 arising from all processes
treated explicitly in time. The leap-frog time step 2 AT is generally larger than that
allowed by CFL stability given the value of the vertical diffusivity, hence the need to
solve the equation implicitly in time. The implicit vertical mixing parameter aidif
is set to unity for the fully implicit method. The field dht, is the vertical thickness
of the tracer cells at time 7. For vertical mixing of velocity, dht becomes the velocity
cell thickness dhu.

The influence of the non-Boussinesq formulation can be thought of as modi-
fying the vertical thickness dht; of the tracer cells to (px(T)/p,) dhty(T) (e.g., see
equation (9.6)). Notably, this modification holds whether we are considering ver-
tical diffusion or vertical convective adjustment, since it is independent of vertical
diffusivity.!

(7) = 9.6)

9.5.2 Discretization of vertical fluxes

The vertical flux F? is located at the bottom of the k' tracer or velocity cell. A
positive value for F{ leads to an increase in ¢y (7 + 1). Away from surface and

IFor these purposes, vertical convective adjustment can be thought of as vertical diffusion with an
infinite diffusivity.
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bottom boundaries, this flux takes the downgradient form

(Pt H1) — (T +1)
Ff= kg ( e ) . 9.7)

The factors of ¢ are evaluated at time 7 4 1 because of the implicit treatement. The
vertical mixing coefficient ki has a general space-time dependence set by a vertical
mixing scheme. As for the flux itself, the diffusivity j is situated at the bottom of
the tracer or velocity cell, depending on whether ¢ is a tracer field or velocity com-
ponent. The array dhwt; represents the vertical distance between tracer points at
time 7. For vertical mixing of velocity, dhwt becomes the distance between velocity
points dhwu.

At the ocean surface, the vertical flux is given by the surface boundary condition
sflux placed on the velocity or tracer. For a tracer,

FZ_o = —stf, 9.8)

with stf MOM4's surface tracer flux array with units of velocity times tracer con-
centration. The minus sign arises from the MOM4 convention that associates a
positive st f with an increase in tracer within the k = 1 cell. In contrast, the present
discussion assumes a convention for the flux F* whereby a positive Ff_, is associ-
ated with a decrease in tracer within the k = 1 cell. For velocity,

Ff_, = —smf, (9.9)

with smf the surface momentum flux with units of squared velocity. At the ocean
bottom, a similar condition leads to

Ff ot = —btf (9.10)
for bottom tracer fluxes, and
Ef e = —bmf 9.11)

for bottom momentum fluxes. The minus signs again represent a difference in con-
vention between MOM4 and the present discussion. In MOM4, a negative btf rep-
resents the passage of tracer from solid rock into the ocean domain, as in geother-
mal heating. For velocity, a positive bm f represents a drag on the ocean momentum
field.

9.5.3 Manipulating into a generic form

To develop the solution algorithm, it is necessary to put the vertical diffusion equa-
tion into a generic form. For this purpose, let us consider in sequence the equation
for surface cells k = 1, interior cells with k > 1, and bottom cells with k = kmt.

9.5.3.1 Surface cells
For surface cells with k = 1 we have

dp(T+1) = d(t+1) +Til(7) (Fy — )
= ¢e(T+1) = Ti(7) (stf + F)

= u(r 1) = () stf i) (P e (T

dhwtk

> , (9.12)
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which leads to

GE(T+1) +Te(T)stf = pp(T+1) <1+ Me(7) I<k> (T +1) (Fk('r) Kk>.

dhwtk dhwtk
(9.13)
For velocity mixing, st f becomes sm f, and dhwt becomes dhwu.
9.5.3.2 Interior cells
For interior cells,
(T +1) = dp(T+1) + Ti(7) (F_y — F)
B B (1 +1) — de(r+1)
= ¢r(T+1) = Tie(T) K1 < ot
Pr(t+1) — ppa(t+1)
+ rk(T) Kk < dhwt, (9.14)

which leads to
. B Ne(T) k1 Toe(T) K
Bi(e+1) = (1) (14 Bty D

— (T +1) (W) — Gy (T+1) (7;22;?) . (9.15)

9.5.3.3 Bottom cells

Bottom cells with k = kmt(i, j) have
bp(T+1) = Gt +1) +Til(7) (Fy — )
= (T +1) + Ti(7) (Fy + Dtf)

= ¢p(T+1) +Ti(T) bt f — Ty (T) Kp—1 (

Gr1(t+1) — (T + 1))
dhwtk,l !
9.16)

which leads to

b (t+1) = Ti(1) btf = p(T+1) (1 + rk(T)Kkl) — (T +1) <rk(T)Kk1> .

dhwtk,l thtkfl
(9.17)
9.5.3.4 A generic form
Introducing the notation
i —rk(T) Kk—l/dhwtk—l ifk>1
A= { 0 ifk=1 (0-18)
| =Tx(7) ke /dhwty  if k < kmt
Cie= { 0 if k = kmt ©.19)
By =1—-Ax—Cx (9.20)
(T +1)+Te(r)stf ifk=1
Op =4 Pi(T+1) if 1 <k <kmt (9.21)
o (T +1) =Ti(t)btf if k =kmt
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renders
Qp = A1 (T+1) + B (T + 1) + C ppya (T +1). (9.22)

9.5.3.5 Solution method

The solution is arrived at by performing a decomposition and forward substitution.
The details are taken from pages 42 and 43 of |

9.6 Convective adjustment

This section provides a description of the NCON and full convective adjustment
schemes.

9.6.1 Comments on the convective adjustment schemes

As detailed in [ ]Jand [ ], the NCON
convection scheme takes multiple passes through the water column, alternately
looking for instability on odd and even model levels. When an instability is found,
tracers are mixed, with their means (weighted by cell thickness) preserved. This
process may induce further instability and therefore more than one pass through
the water column may be needed to remove all instability. The number of passes
through the water column is controlled by the parameter ncon, hence the name of
the scheme.

The NCON convection scheme has come under a lot of scrutiny. The discus-
sion in [ 11 Jand [ ], provide some
elaboration and motivation to not employ the NCON scheme. Its presence in MOM4.0
is solely for legacy purposes so that modelers can attempt to reproduce older results
using the new code.

The question inevitably arises of whether to mix or not mix momentum during
a vertical adjustment process. When momentum is not mixed, it is thought that it
is simply carried along through the effects on the density field. [ |
supports this idea, so long as the purpose is large-scale ocean modeling. Basically,
through geostrophy, adjusting density appears sufficient. Also, the vertical thermal
wind shears in simulated convection regions were found by Killworth to not be too
strong. Hence, mixing momentum along with density did little to affect the overall
solution. These ideas, however, appear less sound for equatorial oceanography, and
so the mixing of both momentum and tracers might be more important in there.

9.6.2 Coding of full convection by M. Eby

In June 2000, Michael Eby (eby@uvic.ca) ported a new coding of the Rahmstorf
scheme to MOM3.1. His code is a bit more efficient and modern. In particular,
there are no more “goto” statements. This code was incorporated into MOM3.1 and
MOMA4. Tests reveal that the results from the Eby code and the original Rahmstorf
code are nearly identical. The researcher can uncomment/comment out two lines
highlighted in the code to get the exact same results if one so desires.
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Vertical advection has been found to constrain the model time step for certain
global model configurations moreso than other of transport processes. The purpose
of this chapter is to present some methods to relax the vertical CFL constraint. The
first method is based on ideas presented by [ ], in which the
integer and non-integer pieces of the advection velocity are split. The next method
time steps second order centered advection implicitly in time, and the final method
time steps the first order upwind implicitly in time. Linear stability analysis for the
implicit schemes have not been performed, and should be done prior to bothering
to code them.

10.1 Vertical transport equation

The vertical tracer transport equation in MOM4 takes the form
(pT)t = —po 0-F%, (10.1)

where we focus on tracer concentration for the moment, with trivial generalization
available for treating vertical velocity transport. For diffusive transport, as treated
in Chapter 9,

F?=—«T. (10.2)

is the downgradient vertical tracer flux. For advection, as treated in this chapter,

FF=wT (10.3)
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is the vertical advective flux. In MOM4, we prefer to separate the density and tracer
concentration prior to temporal discretization, thus to isolate the time tendency of
the tracer concentration

T;=—(T/p)p:— (po/p)0-F~. (10.4)

The density time tendency term vanishes for the Boussinesq case, and the factor
po/p is set to unity. For the non-Boussinesq case, the term —(T/p) p; provides an
added forcing to the tracer concentration, and the p,/p factor modifies the vertical
transport operator. The modification to the vertical transport operator is considered
in the following sections where we discuss the implicit treatment of this equation.

10.2 Vertical CFL violations

Consider the leap-frog time stepped vertical transport equation for an arbitrary
tracer field T

200 AT
pr(T) dhty

where F? is the vertical flux of T entering the k' tracer cell through its bottom face
(see Figure 10.1). The thickness of the k' tracer cell is written dht) to correspond to
the numerical model’s notation. Note that all considerations in this chapter focus
on a single vertical column, so the horizontal grid labels i, j are dropped for brevity.

There are many occasions where large vertical diffusive transport engenders
large vertical diffusive CFL numbers, especially in mixed layer regions. In this
case, it is computationally advantageous to move to a time implicit solution of the
vertical diffusion equation. Otherwise, the model’s time step would need to be
quite low in order to maintain numerical stability. Such is the common means for
time stepping vertical mixing in ocean climate models, and the details are presented
in Section 9.5.

We can also have problems with onerous time step constraints in model con-
tigurations with large vertical velocities and refined vertical resolution. As for the
diffusive case, “large” is defined via the vertical CFL number, with the CFL num-
ber increasing when we refine the vertical resolution, enhance the current strengths,
and increase the strength and frequency of the surface forcing. Indeed, the time step
used in many ocean climate models (circa 2003) are constrained by vertical advec-
tion. Hence, ways to reduce the tightness of this constraint, if only by a few tens
of percents, greatly enhance model efficiency. As with any methods used for com-
putational expediency, they must be tested against conventional approaches to see
whether the solution’s physical integrity is unacceptably compromised.

Ty (T 4 AT) = T (T — AT) + ( > (FF —F2,) (10.5)

10.3 Integer and non-integer advection

[ ] present a means to relax the CFL constraint on 3-dimensional
advection using explicit in time methods. Because vertical advection constrains
the time step for some global models, we limit our considerations just to the one-
dimensional implementation of their scheme.!

1This section benefited from discussions with Isaac Held, 2003.
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Figure 10.1: Schematic illustrating the vertical advective transport passing across
the faces of a model grid cell.

The numerically realized vertical advective flux of T is a discretization of the
advective flux w T. If the vertical velocity component is directed upward, then we
are interested in checking the value of the leap-frog Courant number

C\Y = wbty (2A7) Jdhty 4. (10.6)

The use of the thickness dht 1 is appropriate since and upward velocity compo-
nent advects tracer from cell Ty into cell Ty. When vertical velocity is downward,
we are interested in the Courant number

Cl) = —w_ bty (2A7) /dhty, (10.7)

since the downward velocity component advects tracer from cell Ty into cell Ty .

Consider the special case of a unit Courant number C,EJF) = 1. If the tracer
concentration for a grid cell represents the value for a uniformly distributed con-
centration within the cell, then the first order upwind advective flux

F? = w} Tpyq (T — AT) (10.8)
is an exact discretization of the continuum advective flux passing through the bot-
tom face of the k™ tracer cell (e.g., page 93 of | I). Here, the velocity
component

wi = dht1/(2AT) (10.9)

is termed the integer velocity component, since it corresponds to an integer Courant
number. If we ignore all other fluxes entering or leaving the Ty grid cell, then a
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unit Courant number C,EJF) = 1 means that over a leap-frog time step 2Ar, all of

the uniformly distributed tracer in cell Ty, will leave this cell and pass across the
bottom interface of the Tj cell.

If the Courant number is larger than unity but less than two, then we need to
reach into one more box to gather all the tracer that will pass through the bottom of
the k' tracer cell. For this purpose, we split the vertical velocity component into its
integer and remainder pieces

w bty = wi + wy. (10.10)

A first order upwind flux crossing the bottom of the Tj tracer cell is therefore given
by
F? = w} Tpy1 (T — AT) + wf Ty (T — AT). (10.11)

This flux has the form of an extended upwind flux, where the non-integer portion
of the velocity extends into the next deeper box, since this stronger vertical velocity
can move tracer from both the Ty, and Ty, boxes. Note that masks should be
applied in the model to ensure that there is actually ocean in the k 4 2 tracer cell
rather than land. If there is no ocean present, then we cannot apply the present
techniques. That is, if the Courant number is greater than one at a point next to a
boundary, and the flow is directed away from the boundary, then we cannot apply
these techniques, since we “run out” of fluid from which to draw.

To see if it is necessary to extend into yet another box, it is necessary to compute
the Courant number based on the remainder velocity wX and the box k + 2

CT) = wk (2A7) /dhty 5. (10.12)

If this is larger than unity, then we compute the second integer velocity
Wiy 1 = dhtiyp/(2AT) (10.13)
and the doubly extended upwind flux
Ff = w} Tyy1 (T — AT) + w,£+1 Tiio(T — AT) + w}fﬂ Tiis(T — AT). (10.14)

Note that the further that we move into deeper boxes, the less accurate the scheme
becomes.

10.4 Implicit second order vertical advection

Second order centered advection is the means used in mom4 to vertically advect
velocity. It is becoming less common, however, for advecting tracer. Nonetheless,
we detail how to implement time implicit second order vertical advection. Doing
so removes the vertical advection CFL constraint. Much here follows from the dis-
cussion of vertical mixing in Section 9.5.
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10.4.1 Discrete implicit advection

As in the discussion of Section 9.5, we start by focusing on vertical tracer transport
given by equation (10.5). Second order centered advection leads to the discrete
vertical flux

Ff = aw bty /2 [Ti(T + AT) + Tiyq (T + AT)]
+ (1 — ) wbty /2 [Ti(T) + Ter1(7)]. (10.15)

In this equation, 0 < a < 1 sets the level by which the advective flux is evaluated
implicitly, with « = 1 fully implicit, and & = 0 fully explicit. A similar factor,
known in the model as aidif, is used for vertical diffusion in Section 9.5. We focus
now on the implicit piece of vertical advection.

In equation (10.15), w_bty is the vertical component to the tracer advection ve-
locity. It is centered at the bottom face of the k' tracer cell (see Figure 10.1). For
the « part of this equation, tracer concentration is evaluated at the new time step
T + AT, representing an implicit discretization of the flux. The vertical velocity
is computed at the present time step T regardless whether we consider implicit
or explicit advection. If we instead tried to use velocity at the new time 7 + A7;
i.e., implicitly, then the implicit method would become nonlinear and impractical.
Note that a similar approach is taken when implementing implicit vertical mixing
schemes. In these cases, although we may time step the tracer concentration implic-
itly, the flow dependent diffusivity is computed at time 7 instead of T + A7. Again,
to do otherwise would entail an impractical nonlinear implicit algorithm for ver-
tical mixing. Because we always evaluate velocity at T, we do not expose its time
dependence.

In mom4, we time step the explicit terms first to compute a partially updated
tracer T} (T + AT1). Then, we time step the implicit portion, which for tracers in-
cludes vertical diffusion and, if using the present scheme, second order vertical
advection. For velocity, we may also choose to compute the Coriolis force implic-
itly in time, as discussed in Chapter 25. The implicit vertical advection piece leads
to

* apo AT

Ti(T+ A1) = T (T + A1) + (pk(T) dhtk)
[w,btk (Tk(T + AT) + Tk+1(T -+ AT))

—w,btk,l (Tk,l(’f + AT) + Tk(T + AT))] . (1016)

Following the discussion of vertical diffusion in Section 9.5.1, we introduce the
shorthand
2a AT

(P(T)/ o) dhtr(T)’

Note that I' has dimensions of an inverse velocity. The density ratio is set to unity
when employing the Boussinesq approximation. Note that the parameter & used
for vertical advection need not be equal to the aidif parameter used for vertical
diffusion. Hence, it is useful to introduce the adv label on T', thus bringing equation

) () = (10.17)
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(10.16) to the form

Ti(t+ A1) = T (T + A7)

+ (1) /2) [ bty (Te(T + AT) 4 Tiesn (T + AT)) — w bty (Teoy (T + AT) + Te(T + A1))] .
(10.18)

We can put these results into a standard form via manipulations similar to those
used for vertical diffusion in Section 9.5.3. For this purpose, some rearrangement
brings equation (10.16) into the form

T: (1 + AT) = Te(1 + A7) (1 — (1) 12) w bty + (TN /2) w bty 1)
+ Tiy (T+ A7) (I )2) w bty — Traq (T + A7) (T /2) w bty (10.19)

This equation holds for all grid points in the vertical, starting from k = 1. However,
it is useful to distinguish the treatment at the top and bottom boundaries. Fork =1,
the w_bt,_y contribution is handled via a separate portion of the update process
associated with surface height time tendencies. So this term does not contribute
here, thus leading to

Ti=1 (T + AT) = T}, (T + A7)
+ (T 12) [w bty (Tier (T + AT) + Tyop (T + AT)) — 0], (10.20)

or in the rearranged form

T (T + AT) = Te_i (T + AT) (1 — (1" 12) w bty + 0)
40— Tyo (T + A7) (I )2) w bti—y.  (10.21)

A similar equation results for vertical advection of velocity at the k = 1 velocity cell.
At the bottom of a tracer column, w_bt;_g,,; generally vanishes due to volume/mass
conservation, thus leading to

Tk:kmt(T + AT) = le kmt(T + AT)
+( kaism/z) [0 — w btg—tmt—1 (Temkmt—1(T + AT) + Thmpoe (T + A7T))],  (10.22)

or in the rearranged form

* d
Tk:kmt<T + AT) = Tk:kmt(T + AT) (1 -0+ ( ka kz:nt/z) w- btk kmt— 1)
(adv)
+ Thmpmt—1 (T + AT) ( k”,j;nt /2) W btg—jmi—1 — 0. (10.23)

At the bottom of a column of velocity points, w_buy_g,,, generally does not vanish,
since this velocity does not sit at the ocean bottom when there is nontrivial topo-
graphic slope. Hence, both advective fluxes are present for the velocity equation at
k = kmu. The issue of vertical velocities at the ocean bottom is discussed in Section
2233 of [ 1.
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Following the diffusion discussion in Section 9.5.3, we introduce

F(adv)(’r) wbty_q ifk>1

24, =1{ & k-1 10.24

g { 0 ifk=1 (10-24)
By =1+ Ax + Ci (10.25)

2C, = —T") (1) w_bty (10.26)

to render
Ti(t+ A1) = A T 1 (T + AT) + By Ty (T + AT) + Cr Tia (T+ A7), (10.27)

Note that higher order advection schemes lead to larger stencils. So, if time stepped
implicitly, these schemes require a more expensive matrix inversion.

10.4.2 Comparing to implicit vertical diffusion

There are two differences in details between implicit vertical mixing and implicit
vertical advection: (1) advection and mixing generally use different aidif factors,
(2) the sign for A for advection, defined above equation (10.27), is opposite that for
mixing (see Section 9.5.3.4), (3) By for diffusion is defined as 1 — Ay — C; whereas for
advection itis 1 — Ay — Ci. These differences must be kept in mind when inverting
the system.

10.5 Implicit first order upwind advection

Second order advection suffers from the well known null-mode. One may wish
to employ, instead, a first order upwind scheme which is made more stable via its
large levels of implicit diffusion. If the implicit upwind is applied only at selected
places, then the cost in solution integrity of added diffusion may be worth the ad-
vantage of running with longer time steps.

Following the discussion in Section 10.4.1, we are led to consider the implicit
upwind advection flux

Fr = [wﬁ Te(t + A7) + w0\ T (T + AT)] , (10.28)

where

ZwI(f) = masky 1 (w_bty £+ |w_bty|) (10.29)

and mask is the land-sea mask. Recall that wy is positive if the vertical component
to the advection velocity is directed upwards at the bottom face of the k™ tracer cell.
Use of the flux (10.28) in the tracer equation leads to

Ti(T+ A1) = T (T + A7)
+ 1 [~ D) T (v 4+ A7) + (w7 = 0 ) Te(r + A7) + )" T (v + A7) .
(10.30)



154 CHAPTER 10. VERTICAL ADVECTION

where T" is defined by equation (10.17), and T} (T + A7) is the updated tracer arising
from the explicit time-stepped processes. At the top with k = 1, this equation

becomes

Ti=1 (T4 A1) = Ty (T + A7)
+ r(ﬂdv) [_0 0 + (w(_) _
k=1 . k=1

and at the bottom k = kmt,

Thekmt (T + AT) = Ty_s (T + AT)

0@TENT+Aﬂ%%%2TEﬂT+AﬂL (10.31)

+ r;fg;it [—wilimt_l Tk:kmtfl(T + AT) + (wl(c;imt - wl(c;gcmt—l) Tk:kmt(T + AT) + O'O} .

Rearrangement leads to

Ti (T + AT) = Ag Tr—1(7 + AT) + By Ty (T + AT) + Ci Trs1 (T + AT).

where
4 0 ifk=1
kT Fk(udv)(’r) wlg:)l ifk>1

1— 1) (1) ™) ifk=1

By=< 1+ Fk(adv)(’r) w,(:)l Fk(adv)(’r) w,((_) ifk>1
1+ Fk(adv) (1) w,(:)l if k = kmt

Cp = —Fk(adv)(’r) wlgﬂ if k < kmt
0 if k = kmt

(10.32)

(10.33)

(10.34)

(10.35)

(10.36)
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Some coupled modeling issues
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SOME COUPLED MODELING ISSUES

MOM has traditionally been used as a component within a coupled climate
modeling system. Moving to a free surface has introduced some new issues that
must be addressed when coupling MOM4 to sea ice and river models. These issues
are outlined in this part of the MOM4 Guide.



158



CHAPTER
ELEVEN

Considerations for ice-ocean modeling

Contents

11.1 Introduction . . . . . . ... ... ... Lo o e e 157
11.2 Ocean heating due to frazil formation. . . . . .. ... ... ... 158
11.3 Ice with a free surfaceinaz-model .. ... ............ 159
11.4 Steady statemassbudget . ... ........ ... ... ..... 159
11.5 Dynamicalbudgets. . . . ... ....... ... .. ... .. ... 160
11.6 The problem for z-coordinate ocean models . . .. ... ... .. 161
11.7 Thealternatives . . . . . . ... ... o i, 162

11.7.1 Coarse vertical resolution . . . . .. ... .. ... ... .. 162

11.7.2 Limit the ice thickness . . . . . ... ... .. ... ..... 162

11.7.3 Zero fresh water fluxes and nonzero virtual salt fluxes . . 162

11.7.4 Pressure coordinate oceanmodels . . .. .. ... ... .. 164
11.8 Heat budgetin coupledmodels . ... ............... 164
11.9 Some comments on suppressing a leap-frog mode . ... .. .. 165

This chapter presents some considerations relevant for coupling a z-coordinate
free surface ocean model to a dynamical ice model. We focus on the issues within
the context of a Boussinesq model, although the points are generic to any free sur-
face z-coordinate model.

11.1 Introduction

There are regions where ice-sheets have yet to form, yet ice is present in the lig-
uid water. This slurry of water-ice is commonly known as frazil. The liquid water
portion of frazil has a temperature given by the freezing temperature, which is a
function of the salinity and pressure.

During the formation of frazil, latent heat and salt is released to the liquid sea-
water. To get a rational representation of the salt added to the ocean model requires
that it be coupled to a sea ice model. For the present purposes, we describe a sim-
ple means to represent the heating effect. Note that when implementing a “frazil”



160 CHAPTER 11. CONSIDERATIONS FOR ICE-OCEAN MODELING

option in MOM4 without sea ice, we are led to the unphysical circumstance of hav-
ing sea ice formation stabilize the ocean water column. Hence, one should be quite
careful not to over interpret solutions where frazil heating occurs without the cor-
responding salinification.

11.2 Ocean heating due to frazil formation

To represent the heating due to frazil formation, we assume a linear empirical rela-
tion can be used to express the temperature at which sea ice starts to form (ignoring
pressure and nonlinear salinity effects)

T(°C) = —0.054 s(psu). (11.1)

Water with higher salinity freezes at lower temperatures than water with lower
salinity. If the model’s prognostic temperature equation (i.e., advection, diffusion,
surface cooling) predict that T(°C) < —0.054 s(psu), two effects occur. First, heat
is input to the liquid ocean water as it is extracted from the freezing ocean water.
The amount of heat given to the liquid is

Qfrazit(Joule) = [0.054 s(psu) + T(°C)[dV pC, (11.2)

where
dV =dxdy (Az+n) (11.3)

is the surface grid cell volume, p is the in situ ocean density, and C, is the heat
capacity of seawater with

P Cp = 1035kgm 2 x 3985Joule°C kg ! = 4.125 x 10°Joulem 3C~'. (11.4)

As defined, Qi is the heat sufficient to raise the sea surface temperature to
T(°C) = —0.054s(psu). Note that as the frazil heat is given to the liquid ocean
over the course of a tracer leap-frog time step, the rate of heating of the liquid due
to frazil formation is given by

dQ ezt /dt = (2dtts) 1 [0.054 s(psu) + T(°C)|dV p, Cp. (11.5)
Written as in a prognostic leap-frog time step, we have
T(t +dtts) = T (7 + dtts) + 2dtts dQyazir /dt, (11.6)

with T* (71 + dtts) the potential temperature updated to the new time step due to
the effects of processes other than frazil formation.

We determine the frazil heat Q4 (Joule) within the ocean model. This heat
is applied to the ocean over a single leap-frog time step of length 2 dtts. For heat
conservation within the coupled ocean and sea ice system, this same amount of
heat must be extracted from the sea ice model. Importantly, if the sea ice model
uses a different time stepping scheme than MOM4's leap-frog, then the frazil heat
Qfrazit extracted from the sea ice model must be adjusted accordingly. For example,
the GFDL sea ice model (Sea Ice Simulator) uses a single-time step scheme rather
than a leap-frog. So the frazil heat Qf,,.; extracted from the sea ice model over a
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single dtts time step within the ice model will be given by one-half that input to the
ocean model over a single ocean leap-frog time step 2 dtts

|QHOM (Joule) | = 2 |Q%5; (Joule)]. (11.7)
f f

An example helps to illustrate the magnitude of this heating. Consider the cool-
ing of a surface grid cell with salinity 35psu, and let the cooling be such that the
model’s prognostic temperature equation predicts an updated surface cell temper-
ature of —2°C. Since —2 < —0.054 x 35 = 1.89, frazil will form. The latent heat

given to the liquid ocean associated with the frazil formation is
Qfrazit(Joule) = [1.89 —2|dV p, C), (11.8)

where we made the Boussinesq approximation and so set the in situ density to the
reference density p,. For a surface grid cell of volume 10°m x 10° m x 10 m, the
formation of frazil leads to a local heat given to the ocean of

Qfrazit = 4.5 x 10'° Joule. (11.9)

If this heating occurs over the course of a day (i.e., 2dtts = 1 day), then the rate of
heating is given by
dQ ezt /dt = 4.25 x 10' Watt. (11.10)

If the surface area dA of the grid cell is 10° m x 10° m, this heating by frazil con-
tributes
(dQfrazit/dt) /dA = 42.5 Watt m™2. (11.11)

11.3 Ice with a free surface in a z-model

The remainder of the chapter is concerned with the issues of how sea-ice on the
ocean surface affects the surface height and thus the ocean currents. To introduce
the issues, recall that a column of Boussinesq ocean expands and contracts accord-
ing to

nt=—V-U+qe. (11.12)
This equation represents a volume budget over a column of fluid, and it is derived
in [ ]. In this equation, 7 is the deviation of the ocean surface from its

resting position at 7 = 0. The first term on the right hand side is the convergence
of the vertically integrated velocity. For non-tidal motions, this term accounts for
some one-two meters of surface height deviation. The second term is the fresh
water forcing. Rain, rivers, evaporation, and non-tidal dynamics typically lead to
In| < 3m. Our concern in this chapter is the additional effect associated with ice
formation. Figure 11.1 illustrates this balance.

114 Steady state mass budget

We consider here the steady state mass budget for a single ocean model grid cell
before and after the formation of ice, as shown in Figure 11.2. Without ice, the mass
of fluid in the grid cell is given by

dMocean = Pocean av = <AZ + ninitial) Pocean dx dy/ (1113)
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\D=H+n
—_— —_—
u U
z=—H
~

Figure 11.1: The balance of volume within a column of Boussinesq fluid extending
from the free surface to the ocean bottom is represented by n; = —V - U + gy,
where 1 is the time dependent deviation of the surface height from its resting state
at z = 0. Time dependent fluctuations (1) are driven by (1) the convergence of
volume fluxes associated with the vertically integrated horizontal currents, and (2)
the flux of volume across the ocean surface from fresh water.

where poceqn is the in situ density of ocean fluid, and

Az + Ninitial = Mipigin (11.14)
is the initial thickness of ocean liquid in the grid cell. For the purposes of deriving
the ice-ocean mass balance, we are not concerned with the in situ density of ocean
fluid, but the in situ density of fresh water in the surface grid cell. That is, we are
concerned with the mass of fresh water in the cell

AMfresh = Pfres AV = (Az + Ninitiar) Pfresh X dy. (11.15)

As determined by the dynamical ice model, some fraction of this fresh water freezes
into sea ice with density pj.,, thus forming ice of mass

dMice = hice Pice dx dy, (11.16)

where hj., is the ice thickness. Assuming all the fresh water mass used to form ice
comes locally from an ocean model grid cell, ice formation reduces the thickness of
liquid ocean in this grid cell. At equilibrium, the thickness of ocean fluid is therefore
given by

(Az + Nfina) = (Az + Ninitiat) — Nice (Pice/ Pfresh)- (11.17)

11.5 Dynamical budgets

We now consider an oceanic perspective on the volume and momentum budgets
associated with ice formation and thawing.
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P=P(atm)+g pn P=P(atm) + P(ice) +g pn
Z=Npr-~—=~""="7--- A_ -—-=- A
z=0 ' z=0 h(ice)
N Y
h(ocean) z=N
h(ocean)
z=z1 Y z=z1

Figure 11.2: Freezing of liquid ocean to form sea ice. Shown here is a single surface
model grid cell with vertical thickness Az + 17, where Az = |z;|. The left panel
shows a cell filled with liquid ocean of some thickness /oc.q,. The right panel shows
a cell with ice floating on liquid ocean in an equilibrium state after the transfer of
fresh water from ocean to ice has occured.

For the volume budget, the ice model provides the ocean model with a rate at
which fresh water is transferred between the sea ice and ocean. That is, the ice
model determines the ice contribution to the fresh water flux g, to be applied to
the surface height equation (11.12).

For the momentum budget, we consider the pressure applied at z = 0. This
pressure drives the vertically integrated momentum field in the model. Without
ice, Figure 11.2 shows that p,—g is set by the atmospheric pressure as well as the
hydrostatic pressure arising from the layer of fluid betweenz = 0and z = 7

Pz=0 = Patm + Pocean § 1, (11.18)

where again p,ceqn is the in situ ocean fluid density. In the presence of ice, pressure at
z = 0 has a contribution due to the mass of ice floating on the ocean. This pressure
is given by the weight per area of ice, thus leading to

Pz=0 = Patm + Pocean § N + Pice ghice- (11.19)

The overall dynamical effect of ice on the ocean is small since the density of ice is
close to that of fresh water. Hence, the pressure p,—( is nearly the same whether
there is ice or liquid ocean in the grid cell.

11.6 The problem for z-coordinate ocean models

Sea ice in parts of the high latitudes can reach thicknesses on the order of ten meters
or more. Hence, the ocean surface height can be depressed by a large amount,
which in many cases is larger than the thickness of the ocean model’s surface grid
cell. This situation is unfortunate for MOM4 since the model does not allow for the
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vanishing of grid cells. Additionally, for purposes of simulating the surface mixed
layer, modelers refine the vertical resolution near the surface, and so the depression
of the surface by ice could easily cause the surface grid cell to vanish.

This limitation of z-coordinate models is fundamental. It warrants the consider-
ation of other vertical coordinates. One which has been proposed is p — Pasmosphere-
This coordinate will always vanish at the ocean surface, no matter how low the
surface height is. It is presently a research topic to see whether this coordinate is
indeed useful for global ocean climate modeling.

11.7 The alternatives

We discuss here some choices available to the z-coordinate ocean modeler.

11.7.1 Coarse vertical resolution

One option for ocean-sea ice coupling is to use coarse vertical resolution so that
Az of the ocean surface grid cell is larger than the anticipated sea ice thickness.
When considering this as an option, be sure to recognize the following points. Low
vertical resolution will compromise the integrity of surface ocean mixed layer sim-
ulations. Empirically, we have found resolutions in the upper ocean on the order of
10m or finer is required within the mixed layer. Intermediate resolutions, such as
20m-40m, traditionally have been avoided since they neither provide the necessary
resolution for a mixed layer scheme, nor enough volume to form a simple bulk
mixed layer. For this reason, climate modelers running without a surface mixed
layer scheme typically set their top box to some 50m thick.

11.7.2 Limit the ice thickness

If we insist on have refined vertical resolution for a mixed layer, then coupling a
sea ice model to a free surface z-coordinate ocean model requires one of two alter-
natives. First, we can run the ocean model with real fresh water forcing, yet limit
the ice thickness. From an ocean perspective, this choice is preferable. However,
artificially limiting the ice thickness may in turn affect ice extent. As one key role
of ice in the climate system is how it affects the earth’s albedo, artificially affecting
the ice extent is not desirable.

11.7.3 Zero fresh water fluxes and nonzero virtual salt fluxes

Another alternative is to let the ice thickness be unlimited, yet to remove the direct
effects of fresh water forcing from the ocean. That is, we solve the free surface
equation as

ni=-Vv-U, (11.20)

instead of the budget (11.12). In turn, there is no pressure applied to the ocean from
the overlying ice. It is as if the ice has a zero mass and it exchanges zero mass of
liquid with the ocean. Since the non-tidal dynamical effects yield a surface height
deviation on the order of a few meters, this choice ensures that the ocean model
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will not loose surface grid cells, so long at Az is something larger than some few
meters (e.g., Az = 5m should be sufficient).

By removing fresh water from the volume budget, we reduce the Boussinesq
ocean to an ocean with constant total volume. There is no longer a transfer of vol-
ume across the ocean surface. As the volume transfer between sea ice and ocean is
the problem, one may wish to remove just this transfer, but still allow the ocean to
feel the effects of fresh water from rivers, precipitation, and evaporation. However,
doing so will compromise the conservation of fresh water in the fully coupled sys-
tem. The reason is that ice grows via precipitation (snow). If we allow precipitation
to fall into the ocean as rain, but do not allow fresh water melt from sea ice to enter
the ocean, we have an open loop and so cannot conserve.

Removing fresh water transfers between the ocean and the rest of the climate
system is not the full story for the ocean. The reason is that freshening changes the
ocean salinity, which in turn changes the ocean density. This effect is crucial for
driving ocean currents, and so must be parameterized. As in the rigid lid models,
a means for incorporating this effect into the constant volume ocean model is to
introduce a salt flux across the model surface whenever there is a transfer of fresh
water in the real system.

To motivate the form of the salt flux, let us first consider the case of an ocean
model consisting of a single free surface grid cell affected only by surface water
fluxes. Due to the large hydration energy of salts, there is no salt flux across the
ocean surface, thus leading to the salt budget

O[dxdy (Az+m)s] = 0. (11.21)

That is, total salt is constant in time. Solving for the salinity tendency leads to

_ ([ _S9w
S = (Az+n), (11.22)

where 11; = g, was used since we are considering the whole ocean to be one grid
cell, and so the V - U term is absent. This budget says that as water is added to the
ocean (g, > 0) it drives salinity to smaller values (s < 0).

We now consider the case where there is no transfer of volume across the ocean
surface, and so the total ocean volume is constant. For the present example of
a single grid cell ocean, we therefore have 1 constant in time. To allow for the
freshening effect, fresh water transported into the ocean is replaced by a virtual salt
flux out of the ocean. In order to provide the same salinity tendency as in the case
of fresh water transfer, we are motivated to define our virtual salt flux as

FoY1 = —s gy, (11.23)

However, this flux, which is the product of the local time dependent value of salin-
ity and the local fresh water flux, will not allow for conservation of total salt, even
if fresh water is globally constant. That is, [ dxdyFF°P%¢ is not constant, even if
J dxdy gy is constant. Instead, to conserve total salt we must take the virtual salt
flux as

Fortial — —s, g, (11.24)
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where s, is a constant. In this case, the salinity equation becomes

So Jw
_ . 11.25
o (AZ + n> (11.2)

Comparison with the salinity tendency for the case of real fresh water fluxes reveals
that a virtual salt flux yields an accurate salinity tendency only when the constant
salinity s, is close to the local salinity s. Errors scale as s,/s. With global salinity
running on average near 35psu, it is typical to set s, = 35psu. With this value, how-
ever, river mouths introduce problems with this approach, especially with higher
resolution ocean models where the local salinity can become quite small. In this
case, as the river introduces fresh water to the ocean, the virtual salt flux is too
large in magnitude, thus causing the salinity tendency to be too large. Such large
jumps in salinity can introduce numerical problems on top of the physical problems
associated with spuriously large haline forcing in the model.

11.7.4 Pressure coordinate ocean models

If we redefine our vertical coordinate to be s = p(z) — patm — Pice, then the surface
of the ocean is always at s = 0. Discretizing the vertical according to s-levels al-
lows for arbitrary deviations of the ice thickness, since ice always lives at s = 0.
Investigation of this vertical coordinate has not been thorough, and there may be
nontrivial issues to deal with, especially at the ocean bottom. Such remains a topic
for future studies.

11.8 Heat budget in coupled models

The change in energy at the solid/liquid phase transition is hundreds of times
larger than changes associated with raising the temperature of liquid water by a
degree celcius. Hence, global atmospheric models traditionally do not carry tem-
perature for water. River and land models similarly do not carry a temperature for
its fresh water. Sea ice models do carry a temperature of sea ice by default, since
the water temperature is always at the freezing point. Ocean models, of course,
do carry temperature, as this determines ocean density which in turn affects its cir-
culation. This different treatment of water in the coupled system leads to a global
non-conservation of heat when fresh water is allowed to be transferred across the
ocean interface.

To garner a sense for the magnitude of the imbalance, consider an ocean of two
grid boxes. Fresh water evaporating from a warm box and then condensing into a
cool box will lead to an ocean heat transport per unit area given by

AH/A = Pfresh Cp qu (Twarm — Teotd)- (11.26)

This result assumes that fresh water transferred across the ocean-atmosphere in-
terface, either as precipitation or evaporation, has the same temperature as the sea
surface temperature carried by the ocean model. With pg.q, Cp ~ 4 % 10°]/(m3 K°),
gw on the order of a meter per year, and Tyerm — Tpoig = 10K°, we have AH/A ~
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1Wm~2. With atmospheric models not carrying temperature, there is no corre-
sponding atmospheric heat transport. The coupled system thus has an open loop
and so conservation is lost.

Fluxes crossing the ocean surface are on the order of tens to hundreds of Wm™2,
and so this imbalance is small from an ocean-only perspective. Yet the imbalance is
systematic since evaporation tends to occur over certain regions, and precipation in
other regions. Furthermore, this heat flux imbalance is on the order of that associ-
ated with global warming forcing. Hence, for climate simulations, it may be unac-
ceptable and “corrections” or “adjustments” may be necessary to maintain proper
balances. Notably, this conclusion is independent of the limitations of z-coordinate
models discussed in the previous sections.

11.9 Some comments on suppressing a leap-frog mode

Martin Scdmidt reports that when coupling an ice model to mom with high fre-
quency coupling, it is possible to initiate the leap-frog computational mode. Pulses
of fresh water may arrive intermittedly from the ice, and this can project in some
cases more onto one of the leap-frog branches. Instability can be the result. For this
purpose, it is useful to average the fresh water from ice (or other sources) over two
time steps before sending fresh water to the ocean. This approach then couples the
leap-frog branches.
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This chapter presents a method to distribute river runoff throughout a vertical
column comprised of more than a single ocean model grid cell. This issue is most
important for ocean models with fine vertical grid resolution. Care is taken to ac-
count for the needs to conserve properties using the constraints of a z-model where
only the top cell is allowed to change its volume. The algorithm presented here is
based on discussions with Mike Winton (mw@gfdl.noaa.gov).

We formulate the river mixing process in terms of sources added to the tracer
concentration equations. Changes in the free surface height are handled just as for
other forms of fresh water, such as precipitation and evaporation.

12.1 Introduction

Coupling rivers to an ocean model is necessary when building fully coupled climate
models. For z-models, river discharge is typically given fully to the top model grid
cell. Depending on the model resolution, dumping all the river properties to the top
grid cell can cause problems. Notably, without enhanced mixing, a strong halocline
can arise, with associated problems appearing due to noise from vertical advection
across the strong front. This problem is enhanced in models with relatively fine
vertical resolution, such as the 10m now common for the top grid cell in ocean
climate models.

In the real world, there are two reasons that the halocline at river mouths is
somewhat weaker than can occur in ocean climate models. First, river water does
not generally fill only a single layer of some 10m depth. Instead, rivers discharge
into the ocean over a vertical column whose depth can be deeper than 10m. Second,
and more generally, river properties are mixed through a vertical column due to
waves and tides near the coasts.
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Two methods to relieve numerical problems can be considered. First, we can en-
hance vertical mixing of tracers in the region next to river mouths. This approach
is straightforward and is available in MOM4. In detail, the enhanced mixing is
strongest near the surface and tapers to zero at a specified depth. Such is the only
method available to rigid lid ocean models for handling enhanced mixing at river
mouths. Another method is to distribute the river water, along with its tracer con-
tent, over a pre-defined vertical column. Since the top model grid cell in the z-
coordinate MOM4 is the only one capable of changing its volume through changes
in the surface height, distributing river water into deeper cells must be done care-
fully. In the remainder of this chapter, we detail such a method.

Note that we typically do not alter the transfer of momentum from the river
to the ocean. Instead, we assume that river horizontal momentum is the same as
the corresponding ocean cell, thus leading to no change in the ocean momentum
associated with river discharge. This assumption may require modifications for
careful studies of coastal processes, but it should be sufficient for ocean climate
modeling.

12.2 General considerations

Consider a column of discrete ocean with kr cells in the vertical over which we aim
to discharge river water:

kr = # of vertical ocean cells into which river water is discharged. (12.1)

Allow the river to be discharging at a volume per area per time given by R, which
has units of a velocity:

R = volume per area per time of river water discharge. (12.2)

The river water flux R is distinguished in MOM4 from fresh water associated with
evaporation and precipitation.
The tracer concentration within the river water is given by C,jye;:

C,iver = tracer concentration within river water. (12.3)

Criver is distinguished in MOM4 from the tracer concentration associated with evap-
oration and precipitation. What tracer concentration should be taken for the river
water? Typically, we think of rivers at their discharge point as having tracers of uni-
form concentration. More information about tracer profiles requires a river model,
and even so we may wish to summarize the river information prior to passing it
into the ocean. Assuming a single uniform value for the river tracer concentrations,
and absent a river model, it is typical to assume the following river tracer concen-
tration

Briver = 51 (12.4)
Sriver = 0 (12.5)
Triver - Tf;aln (12-6)
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where k = 1 is the top cell of the ocean column into which the river water is dis-
charged, 0 is the potential temperature, which equals the in situ temperature at the
ocean surface, s, is the zero salinity of the fresh water river, and Ty, is the con-
centration of a passive tracer in the river. By assuming 6,y = 65;;,1, vertically
distributing river water acts to warm the ocean column in regions where the ocean
surface is warmer than depth. In contrast, rivers with zero salinity do not alter the
ocean salt content, yet they do reduce the salinity.

Over a leap-frog tracer time step 2dtts, a thickness H,;,,, = R * 2dtts of river

water is to be distributed throughout the vertical ocean column:
Hyiver = R * 2dtts = river water thickness discharged per tracer leap-frog. (12.7)

Along with this distribution of river water into the ocean column, we distribute the
tracer content of the river into the ocean column:

Criver Hyiver = river tracer content discharged per tracer leap-frog. (12.8)

12.3 Steps in the algorithm

We derive the algorithm by considering the conservation equations for tracer in a
vertical column of ocean model grid cells. To isolate effects from river discharge,
we ignore all horizontal processes. Without distributing river runoff with depth,
tracer conservation is given by

at (V P C)kzl = Po AR Criver

(12.9)
0¢ (VpC)k>1 =0

where V = Ah is the volume of a grid cell, C is the tracer concentration, p is the in
situ density, R is the river discharge rate, and C,;,,, is the concentration of tracer in
the river. As the horizontal area A is constant, it can be dropped from the discus-
sion. Conservation of total tracer in the four-box system is manifest by

kr

0; z (h pC) = Po R Civer- (12.10)
k=1

Whatever is done to redistribute river runoff with depth, this conservation law
must be preserved.!

To derive the algorithm, we refer to Figure 12.1. Here, we prescribe that a frac-
tion of the river water and its tracer content is inserted into each of the cells within
the column, where the fractions sum to unity

5 = 1. (12.11)

We choose the fractions according to the grid cell thickness
_ ol
Skt i

IThe appearance of p, on the right hand side, rather than p,;;.,, is described in Chapter 3 as well
as [ ].

Ok

(12.12)
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k=1
]
* 51 R Cwater
3,RC,
k=2 —_~—
* 6‘2 R Cwater
3;RCy
k=3
B 63R C water
5RC,
-
k=4 64 R Cwater

Figure 12.1: Schematic of river discharge algorithm for the case with kr = 4. We
insert a fraction of the river water into grid cells throughout the column, with a
corresponding amount leaving each cell bubbling upwards in order to conserve
water mass/volume.

where h; is the tracer cell thickness, and is known as dht; in the MOM4 code.

Because the interior cell volumes remain constant in MOM4, the same amount
of water that entered the cell via the river water must then leave. We assume that
it leaves with the tracer concentration of the cell prior to the insertion of the river
water. That is, by inserting some of the river water into the cell at tracer concen-
tration C,jyer, we then displace the same amount of water but at concentration Cg.
This displaced water is bubbled upwards towards the surface cell. Conservation
equations for this algorithm take the form

0; (h,OC)1 = [( PC)2+51 Po Criver]
0; (hpC)x = R[(6pC)rs1 — (60 C)x + 8k Po Criver] (12.13)
0; (h pc)kr =R [_(5 P C)kr + Okr Po Criver]

R
R

S

where the first equation is for k = 1, the second for 1 < k < kr, and the third
for k = kr. The algorithm has the appearance of upwind advection throughout
the column. Hence, conservation of total tracer for the column is trivially verified.



12.3. STEPS IN THE ALGORITHM 173

Formulation as a thickness-weighted tracer source leads to

[(5 ,0C>2 + 51 Po Criver]
[(5 P C)k+1 - (5 P C)k + Ok o Criver] (12-14)
po dht - tracer-sourcer, = R [—(6 p C)xy + 8k Po Criver|

po dht - tracer-source; = R
P, dht - tracer-source; = R

For kr = 1, the method reduces to the default discharge of river into the top cell.
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Quasi-physical Parameterizations
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QUASI-PHYSICAL PARAMETERIZATIONS

In the construction of a realistic ocean climate model, there are issues that arise
warranting a quasi-physical, or engineering, approach rather than a first principles
approach. Tracer transport between regions of the ocean disconnected due to lack
of model resolution (e.g., Mediteranean and Atlantic), and tracer transport across
overflows within coarse models, each provide cases where engineering approaches
have been used. We describe approaches taken in MOM4 to address these aspects
of the simulation.
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The purpose of this chapter is to present the method used in MOM4 for mixing
tracers and mass/volume across land separated points, such as across an unre-
solved Strait of Gibraltar.

13.1 Introduction

In climate modeling, it is often necessary to allow water masses that are separated
by land to exchange properties. This situation arises in models when the grid mesh
is too coarse to resolve narrow passageways that in reality provide crucial connec-
tions between water masses. For example, coarse grid spacing typically closes off
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the Mediterranean from the Atlantic at the Straits of Gibraltar. In this case, it is im-
portant for climate models to include the effects of salty water entering the Atlantic
from the Mediterranean. Likewise, it is important for the Mediterranean to replen-
ish its supply of water from the Atlantic to balance the net evaporation occurring
over the Mediterranean region.

We describe here a method used in MOM4 to establish communication between
bodies of water separated by land. The communication consists of mixing trac-
ers and mass/volume between non-adjacent water columns. Momentum is not
mixed. The scheme conserves total tracer content, total mass or volume (depend-
ing on whether using the non-Boussinesq or Boussinesq versions of MOM4), and
maintains compatibility between the tracer and mass/volume budgets. It’s only re-
striction is that no mixing occur between cells if their time independent thicknesses
differ. This constraint is of little practical consequence.

13.2 Tracer and mass/volume compatibility

Consider two boxes with fluid masses M) = pM) V() and M@ = p(@ V(2 and
tracer concentrations (tracer mass per mass of fluid) TW and T@ (for a Boussinesq
fluid, the density is set to the constant Boussinesq density p,). A mixing process
that conserves total tracer mass and total fluid mass must satisfy

at(T(l) pL (M) 4 7@ p2) V(Z)) =0 (13.1)
3 (P v 4 p2 )y = . (13.2)

Notably, mass conservation can be considered a special case of total tracer conser-
vation when the tracer concentration is uniform and constant: T = 1. This re-
sult provides an important compatibility constraint between the discrete tracer and
mass/volume budgets. For constant volume boxes with a Boussinesq fluid, such as
considered in rigid lid models, compatibility is trivial. For boxes which change in
time, such as the top cells in MOM4’s free surface, and/or for non-Boussinesq for-
mulation where total mass is conserved, then compatibility provides an important
constraint on the methods used to discretize the budgets for mass/volume and
tracer. The remainder of this chapter incorporates these ideas into the proposed
cross-land mixing scheme.

13.3 Tracer mixing in a Boussinesq fluid with fixed boxes

To start in our formulation of cross-land mixing, let us consider mixing of two vol-
umes of Boussinesq fluid, where the separate volumes remain constant in time

9, v =9,v@ = 0. (13.3)

An example is the mixing between two constant volume grid cells. If the mixing
takes place instantaneously and between the full contents of both boxes, as in con-
vective adjustment, then the final tracer concentration in both boxes is given by

T v 4 7(2) y(2)
v +v(@ '

Tfinar = (13.4)



13.4. MIXING OF MASS/VOLUME 181

It is assumed in convective mixing that the volumes of the two boxes remains un-
changed. The picture is of an equal volume of water rapidly mixing from one box
to the other, without any net transport between the boxes.

Instead of instantaneous and complete convective mixing, consider mixing of
the two boxes at a volume rate U. That is, U represents an equal volume per time
of water mixing between the boxes, with no net transport. As shown in Figure 13.1,
U is chosen based on the observed amount of water exchanged through the pas-
sageway. Just as for convective adjustment, the volumes of the two boxes remains
fixed. But the tracer concentrations now have a time tendency. One form for this
tendency relevant for constant volume cells is given by

o, (v Ty = u(T® —T1M) (13.5)
(v Ty = u(r® —T1®), (13.6)
Since the volumes are constant, we can write these budgets in the form
u
1 — = (7@ _ 7@
0;T v (T TV) (13.7)
u
2 — = (7)) _ 7@
0;T v (T T\, (13.8)

This is the form of cross-land tracer mixing used in the rigid lid full cell MOM1.

In the real world, transport is often comprised of stacked flows where deep wa-
ter flows one way and shallow water oppositely (e.g., see Figure 13.1). Hence, a
more refined form of cross-land mixing may consist of upwind advective fluxes
acting between non-local points in the model, where the advective velocity is spec-
ified based on observations. Such sophistication, however, is not implemented in
MOMA4. Indeed, it is arguable that one may not wish to have more details than
provided by the simpler form above, since more details also further constrain the
solution.

13.4 Mixing of mass/volume

In a model with a coarse mesh, the Mediterranean is typically land-locked. Hence,
the net evaporation experienced over the Mediterranean region will cause an ocean
model’s free surface height to decrease without bound. In a model resolving the
Straits of Gibraltar, there is a transfer of mass across the Strait from the Atlantic.
This mass transfer creates a change in the height of the free surface.

Our goal is to have a parameterized mass transfer associated just with a dif-
ference in the free surface height. That is, if the densities are different yet the free
surface heights are equal, then there is no mixing. By transferring masses of wa-
ter, we must also recognize that the water contains tracer. Hence, mass and tracer
mixing must maintain the compatibility mentioned in Section 13.2. In this section,
however, we only introduce a basic form for mass transfer. Full compatibility with
tracer transfer is achieved in Section 13.5

13.4.1 Instantaneous and complete mixing

To start by considering what form for mixing is appropriate, consider a convective
analog whereby a complete mixing of masses oM AM M) and p2) AR 1(2) leaves
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ktop — — ktop
u2

Figure 13.1: Schematic of cross-land mixing. The model’s grid mesh is assumed
too coarse to explicitly represent the lateral exchange of water masses. For this
schematic, we consider an observed sub-grid scale transport U; moving in one di-
rection, and U, in another. To represent the mixing effects on tracers by these trans-
ports, we suggest taking the exchange rate U in MOM4'’s cross-land mixing to be
the average of the transports U = (U; + Uy)/2. Cross-land mixing occurs between
the user-specified depth levels k = kip and k = kyor. If kop = 1, then cross-land
mixing of volume in the top cell must be considered, in addition to tracer transport,
in order to maintain compatibility between volume and tracer budgets.

the final mass per area in both cells given by

pM A M) 4 p(2) AQ) p(2)
A+ A(2) ’

(ph)final = (13.9)
where A1) and A®?) are the temporally constant horizontal areas of the two grid
cells and ©(1) and h(?) are their generally time dependent thicknesses. There are
two problems with this mixing. First, it is too rapid and too complete. Second, it
changes the mass within a grid cell in cases where the initial masses per area are
equal yet the constant horizontal areas of the cells differ.

13.4.2 A finite time incomplete mixing

A finite time and incomplete mixing is analogous to that taken for the tracers in
Section 13.3. Here, we consider the time tendencies for the mass per area within a
cell

at(p(l) h()
at(p(Z) h(Z))

Yy (p@ p@ — p1) () (13.10)
Y2 (oW KD — p@ @)y, (13.11)

where 11 and y(?) are inverse damping times. This proposed mixing results in
a transfer of mass only when the mass per area within the two boxes differs. The
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total mass of the two-box system is conserved if the following constraint is satisfied

[ (ph A)V + (ph A)P] = (AW Y1) — 4D @)y (p@) p@) — o1 V) = 0. (13.12)
This relation places a constraint on the inverse damping times y(!) and y(?)
AW 5 1) = A2 (2) (13.13)

which is easily satisfied.

The problem with the mixing prescribed by equations (13.10) and (13.11) is that
mixing will ensue in the following two undesirable cases. First, if the densities of
the two cells are initially the same p(1) = p(?) = p, yet we have time independent
cells with different thicknesses (e.g., partial bottom cells), then we have a density
change driven solely by the difference in cell thicknesses

h 9,pM = pp ) (h(2) —h) (13.14)

h? 9,0 = py(2 (h(l) _ h(Z)). (13.15)
This situation prompts us to restrict our application of cross-land mixing to be-
tween grid cells with either the same time independent thicknesses, of between
two surface grid cells.

Another problem with the mixing prescribed by equations (13.10) and (13.11) is
seen by considering the situation whereby two top model grid cells have initially
equal thicknesses 1(1) = h(2) = I yet different densities. The model grid cell thick-
ness will evolve because of the difference in densities

pM 3, B = M) (p2) — (1)) (13.16)
p? 0, 1) = 1y (1) — p2)), (13.17)
However, as stated at the beginning of this section, we aim to prescribe a mixing

process that occurs only when the tracer concentration and/or free surface heights
differ. Therefore, we must consider an alternative to equations (13.10) and (13.11)

13.4.3 A finite time incomplete mixing only when surface heights differ

The following prescription satisfies our desires to mix only when the surface heights
differ
0: (oM hW)Yy = M 5 (K — M) (13.18)
0:(p? W) = vy 5 (V) — p2)), (13.19)
When considered over interior time independent model grid cells, then we restrict
its application to grid cells of equal thicknesses. Restricted as such, the right hand

side vanishes for the time independent interior cells, thus leading to no density
mixing. The density factor p can be given by anything convenient, such as

p(l) —+ p(Z)
2 4
or the even simpler prescription (used in MOM4)

D= (13.20)

20 = po. (13.21)
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13.5 Tracer and mass mixing

The general case of mixing tracers and mass is now considered. There are four
constraints desired in the formulation.

e Total fluid mass in the two boxes is conserved.
e Total tracer mass in the two boxes is conserved.

e In the rigid lid Boussinesq full cell case, the tracer tendency reduces to equa-
tions (13.7) and (13.8) used in MOM1.

e If the tracer concentration in the two boxes is the same yet the mass differs,
then mixing of mass will leave the tracer concentrations unchanged.

The last constraint is satisfied if the tracer and mass budgets are compatible, as
described in Section 13.2.
Mixing that satisfies these constraints is given by

2Up
9 (pM D TW) = (A(l) (h(l)i h(z))>(h(z)T(z)—h(l)T(l)) (13.22)

2Up
9,(p? h? T@)) = (A(Z) (h(l)i h(2)>>(h(”T(l)—h(z)T(z)) (13.23)

2Up
W) My = @ _pm
9 (p" h'Y) (A(l) (h(1)+h(2))><h A (13.24)
2Up
@) p2y = 1) _ @
3:(p\ P h'%) = (A(2)(h(1)+h(2)))(h h'?) (13.25)

In these equations, / is the vertical thickness of a tracer cell. For the top cell, thick-
ness takes the form

h=Az+n (13.26)

where Az is the time independent thickness of the fixed volume rigid lid case, and
1 is the surface height. The mass per area equations (13.24) and (13.25) result from
the tracer equations (13.22) and (13.23) upon setting the tracer concentrations to a
constant, as required for compatible budgets. When the cell thicknesses are time
independent, such as the ocean model interior with k > 1, then we restrict our
applications to cases where (1) = h(2), for reasons articulated in Section 13.4.2.

13.6 Formulation with multiple depths

We now consider the case where there are multiple boxes in the vertical, with the
top box generally possessing space-time dependence yet interior cells static. We
restrict attention to situations where mixing occurs between boxes at the same ver-
tical level, as shown in Figure 13.1, and where the time independent boxes have the
same vertical thicknesses.
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13.6.1 MOMI1 formulation of cross-land tracer mixing

In MOM]1, the vertical cells all have time independent thicknesses (i.e., no free sur-
face), and the fluid is Boussinesq. It is useful to start with this case prior to consid-
ering MOM4's more general case.

In the full cell rigid lid case, we follow the approach given by equations (13.7)
and (13.8), where the relevant volume now becomes that for the respective column.
The volumes for the two columns /x = 1, 2 are given by

ktop
v — Alx) dzp = AU gUx) (13.27)
k=kbot

where
Allx) — dxtl(/l]?c) dytl(,l]?c) (13.28)

are the generally different horizontal cross-sectional areas of the tracer cells in the
two columns, and H)) = H®) is the vertical thickness of the two columns. The top
and bottom k-levels for the columns are set by k = ktop and k = kbot. As mentioned
earlier, the formulation here allows for mixing only between boxes that live on the
same k-level, so k = ktop and k = kbot are the same for both columns Ix =1, 2.

Use of these volumes in equations (13.7) and (13.8) leads to the tracer time ten-
dencies for a particular k-level

o, = BO(T® — 1My (13.29)
o7 = B (T 1), (13.30)

where U
B = (13.31)

represents the rate (BU™) has units of inverse time) at which the two columns par-
ticipate in the mixing. Conservation of total tracer is maintained between two hor-
izontally adjacent boxes within the two columns. We see such conservation via
multiplying the above tendencies by the respective time independent volumes of
the two cells, and adding

o, (VI TV 4+ v 12y = (1 — 1Dy (AW BO D) — 4@ B )y — 0, (13.32)

where A1) B(1) h](cl) =U (hl(cl)/H(l)) =Uu (h,(cz)/H(z)) = A® B() h,gz) was used.

13.6.2 Generalizing to free surface and non-Boussinesq

We now generalize to the case of time varying top model grid cells with a non-
Boussinesq fluid. Based on the considerations of Section 13.5 and the form used in
MOM]1, we write for the general case

1) (1) m(1 2U py 2) (2 1) (1

oo ! ) = <A(1) (HD +H(2))> (2 T V1) (13.33)
2) 1 (2) (2 2 U py 1) (1 2) (2

3 (p hP TPy = <A(2) o +H(2))) (hV T — pD 72y, (13.34)
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where H(1) and H(?) are the generally different depths of the two columns. By
inspection, for each k-level this formulation conserves total tracer mass and total
fluid mass (recall Section 13.4). Also, when the mass per area (ph) is constant in
time, as in a rigid lid Boussinesq fluid, and when H 1) = H®@), as in a full cell
model, then these budgets reduce to equations (13.29) and (13.30) used in MOM1.
Furthermore, setting the tracers to uniform constants leads to the transfer of mass
per area between two cells living at the same k-level

(1) (1) _ 2 Upy 2) (1)

Ol he”) = <A(1) (H(1)+H(2))> (= I) (13.35)
(2) 3,(2)y _ 2 U py 1) _ (2

% (o> ) = (A<2> (H(1)+H(2))) (! — ). (13.36)

Again, for time independent cells with k > 1, we restrict our applications to those
cells with k() = 1h(?), which means there is no added density mixing. This restric-
tion is minimal as it only precludes our using cross-land mixing within a partial cell
bottom.

Both of these budgets can be written in a form familiar from other damping
processes

3:(pV W Ty = (M 5 (B2 7 — p(1) 7)) (13.37)

at(p(z) K2 T(Z)) =@75 (h(l) 7MW _ () T(2)) (13.38)

3:(pV hWy = W5 (R — (M) (13.39)

3:(p? h?)) = y2 5 (M — p?) (13.40)

where the depth label k was omitted for brevity, and
2U
(1) _
Y= AW (HD + HO) (134D
Y2 = 2u (13.42)

AR (HD + H2))

defines the damping coefficients. Note that the damping coefficients are gener-
ally time dependent for cases with mixing in the top cell and where the free surface
height is included when computing the column thicknesses H!) and H®>). One may
alternatively be motivated to keep the damping coefficients constant in time by set-
ting H") and H® to be the time independent depth of the respective columns. This
choice is appropriate when using cross-land mixing between columns in shallow
regions where the free surface height is some nontrivial fraction of the full column
depth. MOM4 generally sets the thicknesses to their time independent depths.

To get a sense for the strength of the mixing, consider the case of a one-degree
horizontal grid mesh where the upper thousand meters of the water column is
mixed across Gibraltar with U = 1.75 x 10° m3s~1, which is a reasonable value.
With HY = H®) ~ 1000m we have

VD 2 v® ~ 1.2 x10%m?, (13.43)

and to the damping coefficient

\<A
2
\</\
N
I
<=
X

1.5 x 107 7s~! ~ 77 days ™. (13.44)
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Just as for any other form of mixing, if the damping coefficients are too large, then
it is possible for there to be numerical instabilities. MOM4 provides a check so that
no more than one-half of a particular grid cell is mixed per model time step.

13.7 Implementation in MOM4

In MOM4, both the tracer and surface height budgets are affected by processes
in addition to the cross-land mixing effects discussed in this chapter. Cross-land
mixing effects are introduced to these budgets via source terms as described in this
section.

13.7.1 Semi-discrete mass and tracer budgets

Prior to our incorporating cross-land mixing into the budgets, consider the forms
by which mass and tracer are budgeted absent cross-land mixing. For this purpose,
we note that [ ] derives the following semi-discrete budget for mass
within a discrete column of ocean fluid

Nk
0 (Z thk) =—po V-U+ pyqu- (13.45)
k=1

In this equation, p /iy is the mass per unit area within a tracer grid cell with vertical
label k, —p, V - U is the convergence of the vertically integrated horizontal velocity
with U = z,]g] :kl hiug, and py g is the mass per horizontal area per time of fresh
water entering the ocean surface. In words, this budget says that the mass per
horizontal area contained in a column of fluid changes in time according to the
convergence of the vertically integrated horizontal mass per area, plus any mass
per area entering the ocean through its surface. Since only the top model grid cell
has a time-dependent thickness

hi(x,y,t) =n(x,yt) + Az, (13.46)

we can use the mass balance over a column to derive a prognostic equation for

surface height
Nk

P11y =—po V- Ut pyqu— Y hi0ipr. (13.47)
k=1

The density time derivative term accounts for the so-called steric effects which arise
from time changes in the vertically integrated density. This term vanishes for a
Boussinesq fluid.

The semi-discrete budget for tracer within a discrete grid cell is given by

0:(phT) = —p, V- (hF) — pyh 9, F*, (13.48)

where F represents the advective and sub-grid-scale tracer fluxes. Compatibility
(see Section 13.2) between the mass and tracer budgets manifests when the tracer
budget reduces to the mass budget upon setting tracer concentration to a uniform
value throughout the ocean, at which point the mass of tracer is equal the mass of
fluid.
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13.7.2 Semi-discrete budgets with cross-land mixing sources

If we now add a source to the mass and tracer budgets corresponding to the cross-
land mixing effects, the semi-discrete budgets become

Nk
0; ( z /% hk> =—p,V-U+py Juw + Po 7/(1) (h(Z) - h(l)) 1
k=1
0(phT) = —po V- (hF) — pohd- F* + p, vV ("® T — 1 7O, (13.49)

where the equations are written for the point (1) and & is unity for k = 1 and
vanishes elsewhere. Again, the added mass source is present only for the surface
cell since we restrict application to those cases where the time independent interior
cells have h(?) = h(1).

Given these results, we identify the density weighted source for surface height

p(l) eta-source!!) = p, y(V (h(z) — h(l)) o1 (13.50)
p?) eta-source® = p,? (h(l) — h(z)) S (13.51)
All terms on the left hand side are evaluated in time at the present time step 7.
Those terms on the right hand side are evaluated at the lagged time 7 — 1, as is

required for linear numerical stability. The density and thickness weighted tracer
concentration source takes the form

pM 1Y tracer-source”) = p, V) (h(z) 7@ — () T(l)) (13.52)

p® 1@ tracer-source® = p, 7/(2) (h(l) T — p2 T(Z)), (13.53)

where again terms on the left hand side are evaluated at time 7 whereas those on
the right are at time 7 — 1.

In practice, the tracer equation is time stepped for tracer concentration, with the

time tendencies h ; and p, forcing tracer concentration tendencies. In this case, we
consider

phT;=—p,V-(hF)—p,h0, F*—Thp;—Tph;
+ 0oy (W@ T@ — 1 Ty, (13.54)
where h; vanishes for interior cells with k > 1. Care should be taken to include
the contributions to h ; arising from all processes, including cross-land mixing. For

example, if cell (1) is in the surface k = 1, then the tracer concentration budget for
this cell takes the form

phTy=—p,V - (hF)—pyhd.F*—Thp, — T [ph"o=*md 4 5,y (n? — (1))
+ 0o YD (1@ T@) _ 0 Ty (13.55)

where

Nk
‘01 hﬁo—xltmd — _po v . U _.|_ p_w qw —_ z hk afpk (13.56)
k=1
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is the time tendency for the surface height, sans the cross-land mixing effects (see
the mass conservation equation (13.45)). Time indices on the cross-land terms are
given by

T (h? —hWy = T(7) [(hW? (1 — 1) — KV (T = 1)] (13.57)
2 7@ O 7O = @ (7 — 1) TP (7 = 1) =W (r = 1) TV (= 1). (13.58)

13.7.3 Comment on MOM3 implementation

MOMBS provided a form of cross-land mixing of volume and tracer for a Boussinesq
fluid. However, the implementation failed to provide for compatibility between the
volume and tracer budgets and so was flawed.

13.8 Suppression of B-grid null mode

When mixing the free surface height across an unresolved strait, it has been found
essential to mix between two pairs of adjacent columns in order to suppress the
checkerboard null mode present on the B-grid (see Chapter 26). For the Mediter-
ranean example, this means choosing any two adjacent points on each side of Gibral-
tar and setting the volume transport for each column to U = (1/2) 1.75 x 10°m?®s~1.
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The purpose of this chapter is to present the method used in MOM4 for ad-
justing volume/mass and tracers across land separated points, such as across an
unresolved Strait of Gibraltar, in a way that aims to reduce the difference between
the surface heights. The method is a hybrid between the river discharge process in
Chapter 12 and the cross-land mixing process of Chapter 13.

14.1 Introduction

In Nature, marginal seas such as the Mediterranean have a nontrivial connection
to the World Ocean. Hence, depletion of water in marginal seas by more than a
few meters, or over-flowing water, is unlikely in a century scale climate change
scenario, even in cases where the net moisture budget over the regions surrounding
the marginal sea experience nontrivial changes. That is, the sea levels in marginal
seas are roughly in equilibrium with that in the World Ocean.

In many coarse climate models, the connection between marginal seas and the
World Ocean is unresolved. The cross-land mixing process discussed in Chapter
13 specifies an a priori rate for mixing water masses on the opposite sides of an
unresolved straight. This method works fine for simulations where surface forcing
is reasonably steady in time. Hence, the sea level in the marginal sea cannot deviate
drastically from that in the World Ocean to which it mixes.

Problems arise in a climate change simulation where in general the net moisture
balance over regions may experience a trend. Hence, a constant cross-land mixing
rate may prove insufficient to ensure that the marginal sea grid cells do not either
dry out or become overly full. As MOM4 cannot numerically run with a dry top
grid cell, it is necessary for numerical purposes to ensure that these cells remain
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wet. We are therefore motivated to provide a mechanism for the coarse numerical
model to retain water levels within enclosed seas that are roughly in equilibrium
with the corresponding levels in the adjacent World Ocean.

The cross-land insertion process described in this chapter is a hybrid between
the river discharge process in Chapter 12 and the cross-land mixing process of
Chapter 13. Cross-land insertion computes the difference in surface height between
two grid columns separated by an unresolved straight. The surface height differ-
ence defines a volume of seawater that is taken from the thicker cell and inserted
into the column with the thinner surface height. The insertion occurs over a depth
set by the user, and is realized via an upwind advection scheme just as in the river
discharge method. The time scale for the insertion is set according to a user speci-
tied delay time.

For cases in practice at GFDL, insertion occurs just from top cell to top cell. In
this case, the cross-land insertion process has the same mathematical form as the
cross-land mixing process. Importantly, the rate of mixing between the two cells
with the insertion process is proportional to the surface height difference. For the
cross-land mixing process, the rate of mixing is constant in time.

14.2 Algorithm details

Consider two columns of fluid. Let the horizontal cross-sectional area of the two
columns be A; and A, respectively, and let the vertical thickness of their top cells
be hq1 and hy, with

hi = Az +n; (14.1)

where Az is the thickness of the top cell with a resting ocean. The total volume of
seawater in the two top cells is

V=A1m+ A h. (14.2)

The cross-land insertion process must keep this volume constant. In particular, if
the two columns are allowed to freely exchange fluid and reach an equilibrium,
then the top cells would each have the same final thickness / given by

1%
h=——. 14.3
A+ A (14.3)
This result follows from volume conservation, which requires
Arthi+Ashy = A1h+ Ay h. (14.4)

We prescribe a mechanism to exchange fluid over a finite time so that the exchange
nudges the top cells toward the same thickness h.

To illustrate the algorithm, assume at the initial time that 177 > 1. Upon full
exchange (after an infinite time), the amount of water transferred from the thicker
column to the thinner column is

(hy —h) Ay = (h— ) As. (14.5)
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This exchange leads to the final volume in the two cells

hiAy— (b —h) Ay = h A (14.6)
hy Ay + (h— ) Ay = h Ay. (14.7)

Now assume that water is removed just from the surface cell from the thicker col-
umn and inserted into the adjacent thinner column over its upper few cells. Figure
14.1 illustrates the algorithm. Note that since only the upper cell in MOM4 is al-
lowed to vary its volume, the water inserted at depth into the thinner column bub-
bles up to the surface cell in a manner described in Chapter 12 for the river insertion
algorithm.

If the transfer is assumed to occur at a finite rate set by a time constant 7, then
one can identify an effective rate of volume that leaves the thicker cell

R™MKk Ay = Ay (hy —h) /7. (14.8)
The corresponding rate of volume that enters the thinner cell is
R™M" Ay = Ay (h—hy) /7. (14.9)

The volumes rates are the same, but the area normalized rates R¥F and R™" dif-
fer when the horizontal areas are different. Importantly, the rates of transfer are
functions of the difference in surface heights. This characteristic of the cross-land
insertion process is fundamentally distinct from the cross-land mixing process of
Chapter 13. It is this property that makes the cross-land insertion process of use for
climate change situations.

The area normalized rates R and R™" are analogous to the river discharge
rate considered in Chapter 12. Consequently, it is anticipated that their magnitudes
correspond roughly to that of river runoff, whose values are on the order of a ver-
tical velocity. This observation prescribes a time scale T on the order of a day. A
faster time scale may lead to numerical instability since it will force an overly strong
tendency in the surface height equation. As in Chapter 12, fluid from the thicker
column is inserted into the adjacent smaller column. Tracer conservation requires
that we recognize that transferred seawater has a tracer concentration of the surface
cell in the thicker column.

Ignoring all other processes, the free surface and tracer equations for the two
columns take the following form. For the thicker column, just the top grid cell is
affected

0; nythick — __ Rthick (14.10)
3y (ph C)thick — _ Rthick cthick (14.11)

with p — p, for the Boussinesq case. Note that for the tracer concentration in the
Boussinesq case, we have

at CﬁhiCk — Cihick (_Rthick + Rthick) =0. (1412)

This result holds so long as C*"i¢¥ is evaluated to the 7 time level when computing
the tendency term in the tracer equation. It is the expected result, since by trans-
ferring water with a concentration Cthick wwe should have left behind water of the
same concentration (but less total tracer mass).
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For the thinner column, all cells within the specified range 1 < k < kr are
affected

at nthin — Rthin
0 (hpC)Mm = R™M™ [(5 p C)H™ 4 81 p, CHeK]
0; (p Q)" = R™M™[(5p C) — (8 p O™ + 81 po €]
at (l’lPC)i]zm — Rthm [_(50(:)%1’111 + 5kr 0o Cihzck]

These tendencies are implemented in MOM4 via sources for thickness weighted
tracer and surface height.

(14.13)

Cthick
k=1 k=1
5,RC,
k=2 k=2
5,RCy
k=3 k=3
5,RC,
_ F—~——~ k=4
k=4 54 R Chick

Figure 14.1: Schematic of the cross-land insertion algorithm. An amount of seawa-
ter is extracted from the surface cell in a column with greater surface height. This
water is inserted into the adjacent column with smaller surface height. Insertion to
cells with k > 1 requires a bubbling upwards of water in order to conserve volume,
since only the top cell can change its volume. This figure is directly analogous to
Figre 12.1 which illustrates the method used to discharge river water at depth. Note
that insertion from the top cell to the top cell is often used in practice. An example
is provided in Section 14.4.

14.3 An example: insertion to three cells

It is useful to work through an explicit example to get a sense for how the scheme is
expected to work. For this purpose, consider the initial configuration shown in Fig-
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ure 14.2, in which the thick column has an excess surface height H. For simplicity,
we take this excess height to also equal to the thickness of the cells with a resting
ocean surface. Assume that the horizontal cross-sectional area of the cells is all the
same. Hence, the rate of water transfer, R, is the same for the two columns, and is
given by

R=H/t (14.14)

with T the damping time. Three cells in the vertical into which to transfer the water
yields the fraction

5=1/3. (14.15)

The conservation equations for the top cell in the thick column are
9™ = —R (14.16)
3¢ (h C)ik = —R Cjlick (14.17)

where / is the time dependent thickness of the thick upper cell, and we assumed a
Boussinesq fluid for simplicity. Note that the concentration on the right hand side
of the tracer equation is evaluated at the present time step, 7. As noted in Section
14.2, the tracer concentration remains unchanged in the top thick cell, since

ho; CihiCk — _R Cthick _ CihiCk a; nthick
Cthzck( R+R) (14.18)
=0.

Conservation equations for the three cells in the thin column are

a, """ = R (14.19)

d; (hC)Y™ = R 5 (CJ™ 4 Clleky (14.20)
( )thzn — RS (Cthm Cthm + Cihick) (14.21)
d; (HC)§"™ = R & (—Cl 4 Clley. (14.22)

Using 0; h'"" = R in the first tracer equation leads to
ho, Cthin — R (§ Cthin 4 § Cthick _ Cthin) (14.23)

The deep cells have time independent thickness 1 = H. For the surface cell, its
thickness is assumed to initially have the same value, /" (1) = H. Bringing these
results together leads to the three tracer concentration equations

0; Cihin — T_1 ((5 Céhin 45 Cthz'ck _ Cihin) (14.24)
at Céhin — Tfl 5 (Céhm Cthln + Cihi’:k) (1425)
0, Céhin 15 (_Cghm + CihiCk). (14.26)

Now consider the initial tracer concentration values of

Cihin(1) = 24 (14.27)
Cthick (1) = 36, (14.28)
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where the units are, for example, psu if the tracer represents salt. The first time step
with these initial conditions leads to the following budgets for tracer concentration.
The top cell has the budget

T; CiM" = (245 + 365 — 24)

14.29
_ (14.29)
The second cell’s budget is
0; CH" = 5(24 — 24 + 36
To2 ( +36) (14.30)
=12.
The third cell’s budget is
0 CY'" = 5 (—24 436
TOCs (=24+36) (14.31)

=4.

Notice how the surface cell in the thin column has a negative tendency for
its concentration, whereas the surface thick cell has its concentration remain un-
changed. The surface cell in the thin column has its concentration reduced since
its surface height increases by the amount of fluid that is moved from the thick
cell. This result may appear counter-intuitive since we are moving water with high
tracer concentration from the thick column to the thin column. But it is important
to remember that all the water that left the thick column inflates just the top cell
(since the interior cells in mom4 have fixed thicknesses), and this inflation acts to
reduce to the tracer concentration in this cell. Additionally, only a fraction of the
tracer that left the thick cell is bubbled up to the top of the thin column. Hence,
the negative tendency for the top cell in the thin column can change to a positive
tendency if the ratio 6 becomes large enough. That is, when we insert into fewer
cells. The example in Section 14.4 considers this point further.

14.4 An example: insertion to just the top cell

Consider now the case where the transfer is from the top cell of the thick column
to just the top cell of the thin column. Here, the surface height tendencies are the
same, and the tracer budget for the thick cell is the same. For the thin column, only
the top cell is affected. The budget equations are thus given by

9; nfhick = —_R (14.32)
0; (h C)thick — _R Clhick (14.33)
9;n'"m = R (14.34)
d; (h C)thin — R Cilick, (14.35)

Converting the tracer equations to tracer concentration equations leads to

d; Cthick — (14.36)
) Cihin = (R/h) (CihiCk _ Cihi”). (14.37)
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Figure 14.2: Example for how the cross-land insertion method works. In the thicker
column, we assume an initial excess of water equal to the amount of water in one of
the equally sized interior cells. This excess is transported into the thinner column.

With Cthick = 36 and C!"" = 24, the tendency for C{"" is 12 /T, whereas it was —4/1
in the 3-cell insertion example discussed in Section 14.3.

In general, recall that the rate of transfer, R, is a function of the difference in
surface heights. For larger surface height differences, the rate increases. This exam-
ple provides a clear illustration of the difference between the cross-land insertion
process and the cross-land mixing of Chapter 13. Namely, when mixing from top
cell to top cell, the cross-land mixing process does so at a rate that is fixed. For
the cross-land insertion process, this rate changes as the surface height between the
two columns changes.
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The purpose of this chapter is to detail the method for diffusing tracers along
the bottom topography within the bottom-most model grid cells.

15.1 Motivation for the scheme

As described by [ ], coarse
resolution z-coordinate models generally have a difficult time moving dense water
from shallow to deep regions. This problem has prompted modelers to formu-
late ways to embed sigma-coordinate-like bottom-layer transport into z-coordinate
models. The papers by [ Jand [

present one of the simplest approaches. They prescribe changes only to the tracer
equation, in which there is advection and diffusion within a bottom sigma-layer in-
stead of in the usual horizontal /vertical orientation. More complete and physically
based approaches, in which the momentum equations are also affected, tend to
have problems with spurious horizontal pressure gradients within the sigma-layer,
much as found with sigma-models (see [

These approaches remain a topic of ongoing research.

Advection and neutral transport schemes often have a difficult time maintain-
ing positive-definite tracer values next to rough topography. Without either a large
amount of implicit mixing via the advection scheme, or some added diffusion such
as through sigma-diffusion, the tracer field can soon move outside its physically
realistic range. Sigma diffusion in the model thus works where there is indeed en-
hanced mixing in the real ocean, and where the numerical ocean requires such.
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15.2 Diffusivities

When applying sigma-diffusion, the diffusive flux between two adjacent cells living
at the ocean bottom is given by

F, = —AV,T, (15.1)

with V, the horizontal gradient operator taken between cells in the bottom sigma-
layer. We follow the approach of [ ] in which sigma-
diffusion dominates when favorable according to densities of the participating cells.
That is, the following diffusivity is used

B Amax ifVyp-VH <0
A= { Amin if Vop VH >0, (152)
where z = —H(x,y) is the bottom depth. Note that in practice, this constraint is

applied separately in the two horizontal directions. That is, the zonal diffusivity
is large if px H » < 0 and the meridional diffusivity is large if p,, H, < 0. A ratio
of the two diffusivities Amax/A has been taken as ~ 10°, as suggested by
Doscher and Beckmann.

An additional velocity dependent diffusion was also found by Ddscher and
Beckmann to be of use. In this case, an added sigma-diffusive flux in the zonal
direction is computed using the diffusivity

min

A { u|Ax if pxHy <0 anduHy >0 (15.3)

Amin otherwise.

In this expression, |u| is the magnitude of the zonal velocity component and Ax is
the zonal grid spacing. An analogous meridional flux is computed as well.

15.3 Implementation

The bottom sigma-layer in MOM3 was appended to the very bottom of the model
and effectively lived beneath the deepest rock. This approach has its advantages.
However, it makes for awkward analyses; it precludes direct comparison between
models run with and without sigma-physics since the grid used by the respec-
tive models is different; and it makes it difficult to consider convergence when
refining the grid mesh. For these reasons, the bottom sigma-layer in MOM4 is
included along with the rest of the model domain. This is the approach used by
[ ] (e.g., see their Figures 1 and 2). The disadvantage is
that the sigma-layer thickness bbl_thickness in MOM4 has a generally non-constant
thickness determined by the thickness of the model grid cell next to topography.

To address the limitation of having bbl_thickness constrained by the bottom par-
tial cell thickness dht, we suggest two approaches. For the simple case where dht is
thick, then we set

bbl _thickness = min(dht, sigma_thickness_max), (15.4)

where sigma_thickness_max is a namelist parameter. Values on the order of 50m are
suggested.
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vert

- horz

Figure 15.1: Schematic of the extra along-topography pathway for diffusive trans-
port afforded by the sigma-diffusion scheme applied to the bottom-most model
cells. Darkened regions denote land cells. Tracers in the z-level cells communicate
with their horizontal and vertical neighbors via the usual advection, diffusion, and
convective processes. Tracers in the bottom “sigma-layer” can also communicate
with their sigma-neighbors via sigma-diffusion.

For the more complicated case where dht is thin, then we have no work-around
since doing so involves allowing the sigma-diffusion process to take place between
arbitrary numbers of grid cells laterally adjacent within the sigma layer. The only
option at present is to limit the partial cell thicknesses dht to be no smaller than
ones desired minimum bbl_thickness. This approach reduces the fidelity of the bot-
tom topography representation, but perhaps by gaining a better transport by sigma
diffusion. Such issues remain an ongoing research topic at GFDL.

Consistent with Beckmann and Doscher, the sigma-layer momentum equations
remain the same as interior z-level cells. We now just allow tracers in the bottom-
most cell to be affected by diffusion with their “sigma-neighbors” in addition to
their horizontal and vertical neighbors. If desired, communication with horizontal
and vertical neighbors can be removed for the sigma cells. Figure 15.1 provides a
schematic of the extra sigma-pathway available with sigma tracer diffusion.
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This chapter documents the MOM4 implementation of the [
scheme that discharges dense overflow waters into the deep. The goal of the scheme
is similar to that of the sigma-diffusion scheme of [ 1,
as described in Chapter 15. We discuss differences between the two methods in
Section 16.4.

16.1 The ubiquitous cliffs in coarse z-models

We start this chapter by mentioning some of the limitations inherent in the respre-
sentation of steeply sloping topography in coarse z-models. Consider the case in
Figure 16.1, which shows a typical situation where a steeply sloping topographic
feature is represented in a coarse z-model via a vertical cliff, with many vertical cells
sitting next to the wall. To better resolve such finite, yet steep, topography requires
greatly enhanced horizontal resolution. As discussed by [

“resolving” the topography requires a grid spacing that satisfies

Az/As > |VH|, (16.1)

with Az the vertical grid spacing, As the horizontal grid spacing, and |V H| the mag-
nitude of the bottom topography slope. Resolving a slope of 1/100 with vertical res-
olution of Az = 20m thus requires As ~ 2km, which is some 50-100 times smaller
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than the typical resolution of the 1-2 degree ocean climate models commonly used
today. Note that refined vertical resolution, desired for resolving /parameterizating
vertical physical processes, requires one to further refine the horizontal resolution
required to resolve the slope. Notably, there is little difference between the rep-
resentation of steeply sloping features via either full or partial cells in z-models.
Hence, such cliff features remain ubiquitous in the typical ocean climate z-model.

It due to our inability to fully resolve such steeply sloping topographic features
that we require enhanced bottom mixing/transport whose aim is to allow dense
water to move into the deep, rather than sitting on top of the shelf.

16.2 The Campin and Goosse (1999) algorithm

Consider a heavy water parcel sitting on top of a shelf/cliff that is horizontally ad-
jacent to a lighter parcel sitting over a deeper water column. We may expect that
the dense parcel will move off the shelf, down the slope, and into the deep. Along
the way, entrainment will occur, with many important processes determining the
details of the final water mass. This is indeed a cartoon of an important oceanic
process forming much of the deep and intermediate waters in the ocean. Unfortu-
nately, without some extra “engineering” help, [

show that coarse resolution z-models are incapable of providing the proper dynam-
ical pathways for this transfer of dense shelf water into the deep. [

suggest one means to enhance the representation of this process in z-models (see
Chapter 15). [ ] propose yet another, which we detail in
this chapter. Both schemes only affect the tracer equation. [

discuss a more physically complete, yet numerically difficult, scheme that alters
both the momentum and tracer equations.

16.2.1 Finding the depth of neutral buoyancy

Figure 16.1 illustrates a typical situation in a horizontal-vertical plane. Here, we
see a heavy parcel of in situ density p*°(k = kup) sitting horizontally adjacent to a
lighter parcel of in situ density p?(k = kup). The superscript “so” refers to water
in the “shallow ocean” column, whereas “do” refers to water in the “deep ocean”
column.

If the heavy parcel is allowed to adiabatically move off the shelf and then ver-
tically within the deep column, it will equilibrate at its depth of neutral buoyancy.
To compute the depth of neutral buoyancy, we evaluate the in situ density for the
parcel taken at the local value for the in situ pressure of the environment where it
may potentially equilibrate. For the example shown in Figure 16.1, with (i, j) set-
ting the horizontal position of the shelf parcel and (i + 1, j) setting the horizontal
position of the deep column, we have

P (kup, kup) = p(5i j kups 0, kups Pi,jkup) (16.2)
p* (kup, kdw — 1) = p(8; j kup, 0 j kups Pi+1,j kdw—1) (16.3)
p* (kup,kdw) = p(8i, kup, 6i,j kups Pi+1,jkiw) (16.4)
p* (kup, kdw + 1) = p(8;  kup, 0, j kups Pi+1,jkdw+1)- (16.5)
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Figure 16.1: Schematic of the [121999Campin and Goosse] overflow method in the
horizontal-vertical plane. The darkly filled region represents bottom topography
using MOM4’s full cells. The lightly filled region represents topography filled by a
partial cell. Generally, the thickness of a cell sitting on top of a topographic feature,
as the k = 2 cell in the “so” column, is thinner than the corresponding cell in the
deep-ocean column (the k = 2 cell in the “do” column). Shown are tracer cells, with
arrows representing the sense of the scheme’s upstream advective transport. This
figure is based on Figure 1 of [121999Campin and Goosse].

That is, we compute the density at the salinity and potential temperature of the
shallow ocean parcel, (s; jkups 0, j/kup), but at the in situ pressure for the respective
grid cell in the deep column. The density is then compared to the density of the
parcel at the in situ salinity, temperature, and pressure of the cells in the deep ocean
column.

16.2.2 Prescribing the downslope flow

Following [121999Campin and Goosse], we assume that the dense parcel has a downs-
lope momentum imparted to it. This momentum is proportional to the topographic
slope, H x, the acceleration from gravity,g, the amount of fluid within the cell par-
ticipating in the downslope flow,

0<6<1, (16.6)
and the positive density difference

Ap = p* (kup, kup) — 0" (kup) > 0. (16.7)
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The momentum is retarded by frictional dissipation, p (in units of inverse time).
These considerations then lead to the momentum balance'

0, V1) wuslore — g6 vt Ap |H | (16.8)

where
VW = dxt « dyt + dht (16.9)

is the volume of the dense parcel’s tracer cell. Equation (16.8) is also used to de-
termine a meridionally directed downslope transport, with the meridional topo-
graphic slope H,, replacing H ., and Ap the density difference between meridion-
ally adjacent parcels.

Solving equation (16.8) for the speed u°P¢ yields

uslore — (5‘1) |H| Ap. (16.10)
0

If the depth H refers to the depth of a tracer cell, then the absolute slope |H | is
naturally defined at the zonal face of the tracer cell. Hence, the speed, uslore  jg
likewise positioned at the zonal face. This is the desired position for an advective
tracer transport velocity.

[ ] suggest the values p = 10 *sec™! and 6 = 1/3.
These parameters are set as namelists in MOM4. Using these numbers, with an
absolute topographic slope of |H ;| ~ 1072 and density difference Ap ~ 1kgm~3,
leads to the speed

usoP¢ ~ 03 msec L. (16.11)

Associated with this downslope speed is a volume transport of fluid leaving the
cell
ustore = ys1ore dht,,,;, dyt. (16.12)

In this equation, dht,,;, is the minimum thickness of the shelf cell and the adjacent
cell. This minimum operation is necessary when considering MOM4's bottom par-
tial cells, whereby the bottom-most cell in a column can have arbitrary thickness
(Figure 16.1). With 157 ~ .03ms~! corresponding to the speed of fluid leaving a
grid cell that is one-degree in width and 50 m in depth, we have a volume transport
Uslore ~ 0.2Sv. Larger values are easily realized for steeper slopes, larger density
differences, and larger grid cells.

16.2.3 Mass conservation and tracer transport

To conserve mass throughout the system, the mass flux exiting the shelf cell and
entering the deep cell must itself be returned from the adjacent cell. This situa-
tion then sets up a mass flux throughout the participating cells, where there is zero
convergence of the flux and so zero net increase or decrease in mass. For the Boussi-
nesq fluid, mass conservation is replaced by volume conservation. This redirected
plumbing is shown in Figure 16.1.

IThe appearance of the constant density, p,, on the left hand side, rather than the in situ density,
p, is described in Chapter 3 as well as [ ]. In those discussions we show that p, is
appropriate for either the Boussinesq or non-Boussinesq forms of MOM4.
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The convergence-free seawater mass flux carries with it tracer mass. If there are
differences in the tracer content of the cells, then the tracer flux will have a nonzero
convergence, and so it moves tracer throughout the system. We use first-order up-
stream advective transport as a discretization of this process. First-order upstream
advection is the simplest form of advection. Its large level of numerical diffusion is
consistent with our belief that the bottom layer flows in the real ocean near steep
topography are quite turbulent. Hence, although inappropriate for interior flows,
we are satisfied with the use of upstream advection for the overflow scheme.

16.3 Implementation in MOM4

This section details the implementation of the [ ] scheme
in MOMA4.

16.3.1 Start of the integration

At the start of the model integration, it is necessary to determine those grid points
where it is possible to have a downslope flow. For this purpose, we introduce the
array topog_step(i, j,m), with m = 1,2,3,4 specifying in a counter-clockwise di-
rection the four surrounding columns whose depths are to be compared to that
at the central (7, j) point. Figure 16.2 illustrates this notation. If the adjacent col-
umn is deeper than the central point, thus representing a possible direction for
downslope flow, then topog_step(i, j, m) for this value of m is set to unity. Oth-
erwise, topog_step(i, j, m) for this m is zero. Note that with partial bottom cells,
it is possible for an adjacent column to be deeper yet for the number of verti-
cal cells to be the same in both columns. To initiate the downslope scheme of
[ ], we insist that there be at least one more grid cell in

the adjacent column.
]
(i2)
i

(i5.3) T (i,j,1)

(i.5,4)

Figure 16.2: Plan view (x-y plane) of a tracer grid cell at (7, j) and its horizontally
adjacent tracer cells. We label the adjacent cells (i +1, j), (i, j+1), (i—1,7), (i, j—1)
asm = 1,2,3,4. Notice that we do not consider downslope flow along a diagonal
direction.
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16.3.2 During a time step

During each time step, we locate where downslope flow is favorable for points sit-
ting on the ocean bottom at (i, j, kmt(i, j)). For each of the four directions (m =
1,2,3,4) where topog_step(i, j, m) = 1, we check the density difference between the
central point and the adjacent point. If the density of the central point is larger,
then the [ ] scheme is used to initiate downslope trans-
port. For these directions, we locate the depth of neutral buoyancy for the central
point according to the discussion in Section 16.2.1, and so specify the number of
vertical cells, kdw, participating in the transport. Note that we allow for downslope
transport to occur in more than one direction, as occurs in those cases for a fixed
(i, j) where topog_step(i, j, m) has more than a single nonzero element.

Our prescription is mindful of the possibility for the shallow-cell to be a par-
tially filled cell sitting on the topography. For this reason, the convergence-free
volume transport associated with the downslope flow is weighted by the mini-
mum vertical thickness of the two cells (equation (16.12)). Otherwise, it would be
possible to flood a thin partial cell with a huge amount of tracer (e.g., heat).

We incorporate the effects from the [ ] overflow scheme
into MOM4'’s tracer source array. To derive the source, we proceed as for the river-
mixing and cross-land mixing formulations (Chapter 12 and 13) by focusing on the
time evolution due to just the overflow process. For the particular zonal-vertical
case illustrated in Figure 16.2, we prescribe

0 (V vt pc)z]kup = po U™V (CY 1+1]kup z(}kup) (16.13)
0 (VW 0 OO jkup = Po U (CH ko1 — %1 jup) (16.14)
0 (VW p OV i karo1 = Po U7 (CH g — CI1 i katio—1) (16.15)
0: (VW 0 O)f 1 ko = o U7 (s — i ) (16.16)
where again Us'°P¢ = uloPe dht,,;, dyt, with
it iy = min (it g, ABE 4 ) (16.17)

the minimum thickness of the two cells at k = kup. For the Boussinesq case, p
factors on the left hand side are set to the constant reference density p,. Setting
the tracer concentration to the same uniform value leads to vanishing time tenden-
cies for p V(®) in each cell, thus reflecting volume /mass conservation. Additionally,
summing these four equations leads to a vanishing right hand side, thus reflecting
conservation of total tracer in the system. Since the downslope mixing has the form
of an upstream advection, we discretize temporally by evaluating the tracer and
density on the right hand side at the lagged time 7 — 1.

As implemented in MOM4, the tracer source array is modified in the following
manner to account for the downslope flow from [ ]

[A" dht - tracer-source™];  ,, = U~P (CH, igeup — Cideup) (16.18)

d
[A®) dht - tracer-source Vi1, w1 = U (C i1, kdw C;jJrl,j,kdwfl) (16.20)

(ct

[A®) dht - tracer-sourced"]i+1,]<,kup = slore (¢4 z+1 i kdw—1 Cz+1 ikup)  (16.19)
(ct
(Cof kup = Gl te) (16.21)

[A®) dht - tracer-sourced"]iﬂl jkdw = = slore
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where
AW = dxt « dyt (16.22)

is the time independent horizontal area of a tracer cell.

16.4 Comments on the two overflow schemes in MOM4

As mentioned at the start of this chapter, there are two methods implemented in
MOM4 whose aim is to enhance the ability of the simulated fluid to form dense

deep water: (1) the [ ] scheme described in this chap-
ter, and (2) the sigma diffusion scheme from [ ] and
[ ] as described in Chapter 15. Both are quasi-physical

engineering approaches to the problem of simulating deep water formation near
topography. Each provides plumbing routes beyond the local horizontal-vertical
routes available in z-models. In this way, these methods provide a new means for
representing the flows. Questions such as parameterizing the rates of entrainment,
volume flux, etc. (e.g., [ ]) are not directly addressed
by these schemes.

Climate modelers generally gauge the utility of overflow schemes on the overall
results: Do they indeed provide a route for deep water formation near topographic
gradients in a manner expected from observations? Yet details of the transport are
often not the first priority. This situation is unsatisfying from a process physics
perspective. Given the coarseness of ocean climate models (circa year 2003) relative
to the small scales of typical high-latitude overflow dynamics, we may not be able
to do better with the z-models.

The density structure in Figure 16.3 illustrates a case where the [
scheme does not prescribe enhanced downslope transport. The reason is that their
scheme only works with density within the bottommost tracer cell. For this exam-
ple, density at the bottom of the deeper column is greater than that on the shelf, and
so there is no enhanced transport prescribed. In contrast, the [
scheme prescribes a downslope transport, with the dense shelf water moving to its
neutral buoyancy depth.



210 CHAPTER 16. DISCHARGING OVERFLOW WATERS INTO THE DEEP

p=1035

p=1033

p=1034

p=1035

p=1036

p=1037

Figure 16.3: Schematic of a situation where a dense parcel sits on a shelf next to
a column whose upper portion is light, but whose deeper portion is denser than
the shelf. For this case, the [121999Campin and Goosse] scheme prescribes a trans-
port between the shelf water at level 1 and the deeper water at level 3, with wa-
ter bubbling upward to conserve mass as shown in Figure 16.1. In contrast, the
[41997Beckmann and Doscher] scheme will not prescribe any enhanced transport,
since here the bottom of the deep column is denser than the shelf.
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Some diagnostics
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SOME DIAGNOSTICS

MOM4 makes extensive use of the FMS diagnostic manager, whereby any field
that is carried by the model can be trivially output to a diagnostics file via the reg-
istration of that field with the diagnostics manager, and the associated entry of the
field’s name within the diagnostics table. This part of the MOM4 Guide does not
describe this aspect of diagnostics. Instead, we focus here on the formulation and
computation of certain diagnostics that have proven of use for research with z-
coordinate models.



214



CHAPTER

SEVENTEEN
Streamfunctions
Contents

17.1 Meridional-overturning streamfunction . ............. 213
17.1.1 Summary of continuity and notation . . . . . ... ... .. 213
17.1.2 Meridional and vertical transport . . . ... ........ 214
17.1.3 Overturning streamfunction . ... ............. 215
17.1.4 Choosing the reference values . . . ... ... ....... 216
17.1.5 Transport beneath an arbitrary surface. . . . . . ... ... 217
17.1.6 Transportfrom GM90 . ... ... .............. 218
17.2 Vertically integrated transport . . . ... ... ... ........ 218
17.21 Summary of therigidlid. . . ... ... ........... 218
17.2.2 General case of divergentflow . . ... ... ... ... .. 219

The purpose of this chapter is to present the mathematical formulation of stream-
functions commonly used to summarize the overturning circulation as well as the
vertically integrated circulation.

17.1 Meridional-overturning streamfunction

The meridional overturning streamfunction is commonly used to diagnose features
of the thermohaline circulation. For the Boussinesq model, it provides a direct pic-
ture of zonally integrated volume transport for both steady-state and transient mo-
tions. For non-Boussinesq models, it provides a picture of mass transport only for
steady-state motions.

17.1.1 Summary of continuity and notation

We follow the formulation of non-Boussinesq z-coordinate ocean models presented
by [ ]. In this case, a non-Boussinesq ensemble averaged fluid leads
to the continuum model continuity equation

pr+pV-v=0. (17.1)
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In orthogonal horizontal coordinates, velocity field divergence takes the form (see

[ D

Vv = (dydz) ' (dydzu),+ (dxdz) ' (dxdzv), + (dxdy) ' (dxdyw),.
(17.2)
which then leads to the continuity equation

(dV/po) pi +dx(dydzu),+dy (dxdzv) y +dz(dxdyw),. =0, (17.3)

where

dV =dxdydz (17.4)

corresponds to the volume of a model grid cell. Note that the volume of grid cells in
the top levels of MOM4 are time dependent due to the use of a free surface. Hence,
it is not generally valid to bring dV inside the time derivative.

To set the notation, the distance between two infinitesimally close points on the
sphere is written

(dx)? = (hy d&Y)2 + (hp d&2)? + (h3 d&3)? (17.5)

when using generalized orthogonal coordinates (&1, £2,£3). For a Traditional Ap-
proximation continuum system (see [ I), the stretching functions hy
and h; are dependent on horizontal position alone, and /3 is unity. However, to al-
low the following manipulations to incorporate MOM4's partial cells, we maintain
a horizontal and vertical position dependence to /3.

17.1.2 Meridional and vertical transport

To proceed, introduce the transports

&

YV = (d2)! / dx (vdz) (17.6)
&l
&

W = (dy)’l/dx(wdy). (17.7)

é

Integration is taken along a line of constant &!, where &! is the generalized orthog-
onal coordinate corresponding to the spherical longitude A. Integration endpoints
&4 and &} are assumed to be at land-sea boundaries, where 1 vanishes, or over a pe-
riodic domain. As in the spherical coordinate case, we refer to ) as the generalized
meridional transport. To motivate the definition of the transport streamfunction,
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take the generalized meridional derivative of dzV to render

&
(dzV), = d, / dx (dz o)
51

1 y
= —/62 (dxdzo)

hy

E.l
1 y
— [ dy(dxdzv), (17.8)
dy
&

These steps made use of the properties of orthogonal coordinates whereby 0, com-
mutes with the zonal integration, since it is orthogonal to the integration pathway
taken along a line of constant &l. However, 9, does not commute with the distances

dx and dz, each of which can be functions of the generalized meridional coordinate
&2. Use of continuity in the form (17.3) yields

&
—dy(dzV), = / [dz (dx dyw) - + (dV /o) ]
&
&
= dz(dyW)+ [@V/p0) o (17.9
3
To reach this relation, we used
&
/ dx (dydzu)y =0, (17.10)

&

which follows from the chosen zonal boundaries.

17.1.3 Overturning streamfunction

In summary, the zonally integrated transports satisfy the balance

&
(d2) 1 (dz V), + (dy) ! (dy W)+ (dyd2) ! [(@V/p)pe=0.  (17.11)
&
This relation indicates that meridional and vertical transports are balanced by fluc-
tuations in mass. In a steady state, or for the Boussinesq models, the mass fluctua-

tions vanish, thus leading to volume conservation manifesting as the two-dimensional
non-divergence condition

V)
0&2

dy(dzV),, +dz(dyW),. = d&*d&? (a( + oz W)> =0. (17.12)

0&3
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The second equality follows by the orthogonal nature of the coordinates, whereby

0(d&?)  a(d&®)
TR T 0. (17.13)

for the steady state , or for the Boussinesq models,We are thus motivated to intro-
duce an overturning streamfunction that satisfies

Vo= —y, (17.14)
W = v, (17.15)

The streamfunction ¥ summarizes the meridional-depth volume transport for a
Boussinesq fluid, or for a steady-state non-Boussinesq fluid. It has dimensions
volume/time, and so it represents the volume transport of water in the (y, z) plane.
The typical dimensions are Sverdrups, where 1Sv = 10°m?sec!. Multiplication
by p, produces a mass transport streamfunction p, ¥ in units of kg sec™!.

We can solve for the streamfunction via integration of its defining relation and

setting a boundary condition. Integration of equation (17.14) leads to

Y(y,z) =Y(y,z) — / dz' V(y,7'), (17.16)

ZO

where z, is a reference depth. Similar integration of equation (17.15) leads to

y
Y(y,z) = ¥(yo,2) +/ dy' W(v/, z), (17.17)
Yo

where y, is a reference latitude. It is now possible to develop two equivalent expres-
sions for the overturning streamfunction. The first is found through substituting
the expression (17.16) into (17.17)

z ¥
Y(y,z) = ¥Y(yo,20) — /Z dz' V(y,, 2') —|—/ dy W(v, z). (17.18)

0

The second is found by substituting equation (17.17) into (17.16)
z v
Wy, 2) = Wy, 20) — / dz'V(y,2) + / dy' W(1/, zo). (17.19)
Zo Yo

17.1.4 Choosing the reference values

The question is how to choose the reference values y, and z, to simplify the com-
putation of the overturning streamfunction. In general, evaluation of the vertical
transport term is more difficult than the meridional transport term. One is there-
fore motivated to focus on equation (17.19) when computing the streamfunction,
rather than equation (17.18). For choosing the reference value z,, it is useful to
consider the water budget and how it closes. In the rigid lid, the water budget is
closed within the ocean domain. As such, so long as the value of z, corresponds to
a value anywhere completely outside the ocean domain, the vertical transport term
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i, Ay’ W(y', z,) vanishes. For the free surface, however, the possibility of surface
water fluxes allows for an open water budget above the ocean surface. Since there
is no attempt here to account for water cycling through the rock beneath the ocean,
one can assume all water transport in rock vanishes. Hence, by taking z, to be some
value completely beneath the ocean bottom, the vertical transport term can again
be dropped with the free surface. As a consequence, a general expression for the
overturning streamfunction, valid for both the free surface and rigid lid, is given
just by the meridional transport term

z

z Xp
Y(y,z) = — /dz’V(y, Z') = —//dx dz'v. (17.20)

Zo Xa

In practice, it is not necessary to evaluate the integral anyplace beneath the ocean
bottom, since the water velocity vanishes there. On the bottom, the vertical coor-
dinate takes on the non-constant value z = —H(x, y). Therefore, when integrating
just to the ocean bottom, it is necessary to perform the vertical integral first, and
then the zonal integral

Xp z
W(y,z) = — / dx / dz' v. (17.21)
Xq —H

Beneath the ocean surface, the no-normal flow condition implies that the over-
turning streamfunction is a constant along the side and bottom land-sea bound-
aries. For the rigid lid, the absence of fresh water input to the ocean surface also
implies that its overturning streamfunction is a constant at the ocean surface. The
choice ¥(v,, z,) = 0 means that the rid lid overturning streamfunction is zero along
all the boundaries. For the free surface, however, the overturning streamfunction
need not be a constant on the ocean surface, due to the presence of surface water
fluxes, whereas it remains zero on the sides/bottom just as for the rigid lid.

17.1.5 Transport beneath an arbitrary surface

As shown in Section 40.9 of | ], we can extend the
above considerations to the case of generalized vertical coordinates. In this case,
we are concerned with the meridional transport of fluid beneath some generalized
vertical coordinate surface. It is a straightforward matter to extend the definition of
the overturning streamfunction to this case, where

x, 8(z)

Y(y,s) = —/ / dxdz o, (17.22)
Xa 7S(H)
with s = s(x,y,z,t) the generalized vertical coordinate (see [ ] for

details). Surfaces that are physically of interest include various potential density
surfaces, which are especially relevant when the flow is adiabatic. See Section 40.9
of ] for more discussion.
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17.1.6 Transport from GM90

The parameterization of [
provides a volume transport in addition to the resolved scale Eulerian mean trans-
port. The total meridional-overturning streamfunction takes the form

Xp z
ot (y 7)) = — /dx / dz’ (v + 0v8™), (17.23)
Xq —H

where
v8" = —0; (k Sy) (17.24)

is the eddy-induced velocity with S, = —d,0/0.p the neutral slope in the y-direction
and « a diffusivity. Performing the vertical integral on the GM90 piece leads to

W (y,z) = Wy, 2) + W& (y, 2) (17.25)
where N
b
W (y, 2) = /dx(K 5,) (17.26)
Xq

withk S, = 0atz = —H. Hence, the
parameterization adds a contribution that scales linearly with basin size, isopyncal
slope, and diffusivity

WM ~ L Sk. (17.27)

As an example, let k = 10°m?2s~ !, S = 1073, and L = 107 m, which yields 7 ~
10Sv. Such transport can represent a nontrivial addition to that from the resolved
scale velocity field.

17.2 Vertically integrated transport

The purpose of this section is to discuss the streamfunction used to summarize
the vertically integrated transport. Only when vertically integrated flow is non-
divergent, such as for the Boussinesq rigid lid case, will a streamfunction be suf-
ficient. In general, it only approximates the flow. However, for many cases the
approximate streamfunction is quite useful.

17.2.1 Summary of the rigid lid

With the rigid lid method of [ ], it is assumed that the vertically inte-
grated velocity in a Boussinesq fluid is non-divergent V - U = 0. Hence, it can
be described via a scalar streamfunction U = 2 A V. In this case, the vertically
integrated advective transport between two points is given by

b 0
T, — / dl A - / Az u = Yo — by, (17.28)
a —H

where dl is the line element along any path connecting the points 2 and b, and fiis a
unit vector pointing perpendicular to the path in a rightward direction when facing
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the direction of integration. As written, T,, has units of volume per time, and so it
represents a volume transport. Therefore, the difference between the streamfunc-
tion at two points represents the vertically integrated volume transport between
the two points. It is for this reason that the streamfunction is sometimes called
the volume transport streamfunction. Note that [ ] defined the barotropic
streamfunction with an extra factor of the Boussinesq density p,, such that his mass
transport streamfunction has the dimensions of mass per time rather than volume
per time. The difference is trivial for a Boussinesq fluid.

17.2.2 General case of divergent flow

The vertically integrated horizontal momentum density
1
po U= / pu (17.29)
-H

generally has a non-zero divergence due to fluctuations of mass and/or volume
within the vertical column. Hence, it corresponds to both a streamfunction P and a
velocity potential x

U=2AVY+Vy. (17.30)
Only for a Boussinesq rigid-lid model with zero fresh water flux will x vanish.

Hence, to compute the precise vertically integrated transport passing between two
points, a direct evaluation of the integral

b
T, — / dlf-U (17.31)
a

is given. Although accurate and complete, this integral does not readily provide a
horizontal map of transport, and so it looses much of the appeal associated with
the transport streamfunction used with a rigid lid.

However, for many practical situations, maps of the function

P(x,y) = — yy dy/ U(x, ) (17.32)

are quite useful, where the lower limit y, is taken at the southern boundary of the
domain, generally given by a solid wall for ocean climate models. By its definition,
the meridional derivative of 1 yields the zonal transport

¥, =U. (17.33)

The zonal derivative, however, does not yield the meridional transport due to the
divergent nature of the vertically integrated flow. To see what it does yield, let us
restrict attention to the Boussinesq case with spherical coordinates, where

1 R
=V -
R cosd)ll)’]\ cos ¢

¢
/ ¢ cos ¢/ V - U. (17.34)
bo

To reach this result we used where cos ¢, V(A, ¢,) = 0. With volume conservation
in the Boussinesq model leading to

V-U=—1+qu (17.35)
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we see that V - U vanishes only when there is zero time tendency of the free surface
height and zero fresh water flux through the surface. Hence, the zonal derivative
leads to the meridional transport plus a term that vanishes in the case of a steady
state (1; = 0) and a zero fresh water flux. It is useful to see how large the extra term
might be. For this purpose, zonally integrate the derivative 1 » to find

A
YA, @) — (Ao, P) = RCOSd)/A dA V(X, )
A ’ [0}
_ RZ/ V|4’ cosg! (~mitq0). (1736)

For example, with —n; + g, = 1m/year applied over a 1000km x 1000km area,
the extra term contributes much less than a Sv to the streamfunction. Cases where
the differences are larger certainly can be constructed. But for many diagnostic
purposes, the differences are negligible.

By construction, 1 reduces to the transport streamfunction in the case of a rigid
lid where V - U = 0. However, this is not a unique choice and alternatives do exist.
For example,

PV (x,y) = ¥(x0,y) + /xx dx' V(' y), (17.37)

gives
V=19 (17.38)

1" has the advantage that zonal derivatives give the exact meridional transport, yet
the meridional derivative deviates from the zonal transport. In the end, it might be
useful to plot 1 and Y* and compare.

As each streamfunction is defined only up to an arbitrary constant, it is useful
to specify this constant in a manner to correspond to that resulting from the rigid
lid approximation. To do so, it is recommended that one normalizes each stream-
function by the value at A = 300° and ¢ = —20°, which corresponds to a point over
South America. This convention corresponds to taking the Americas as the zeroth
island in the rigid lid method.
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The purpose of this chapter is to present diagnostics of integrated forms for
tracer transport.

18.1 Introduction

Diagnosing the transport of tracers across a particular section or through a straight
provides a useful means to compare simulations with observations. It also allows
one to summarize a large amount of information thus integrating together many
processes. As described in various papers, such as [ ], one common inte-
grated diagnostic is the meridional tracer transport. Furthermore, when coupling to
an atmospheric model, [

found it crucial to roughly match the ocean meridional heat transport to that ex-
pected by the atmospheric model. Motivated by the importance of meridional
tracer transport to climate modeling, we focus mostly on meridional transport,
though all results can be generalized to arbitrary directions. For the tripolar grid
supported by MOM4 (Section 4.2), the following diagnostics represent true north-
ward transport for regions south of 65°N.
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18.2 Integrated mass budget

Prior to developing budgets for tracer, we revisit some issues discussed in Section
17.1 with mass budgets integrated over certain domains. For this purpose, recall
that conservation of mass for an infinitesimal parcel of model fluid is given by (see
Section 3.3)

pr+pV-v=0, (18.1)

where p is the density and v = (u, w) is the three-dimensional advection velocity
discretized according to the needs of the energetic analysis described in Section 6.2.
Integrating this local budget vertically over the depth of a fluid column leads to the

budget
n
0; (/dzp) +poV-U = pygu. (18.2)

—H

In this equation,

n
U= /dzu:(H+n)ﬁ (18.3)
~H
is the depth integrated velocity, g, is the volume per area per time of fresh water
entering the ocean surface (7, > 0 means water enters the ocean domain), z = —H
is the ocean bottom, and is z = 11 the free surface deviation from z = 0. Derivation
of equation (18.2) required the use of the surface and bottom kinematic boundary
conditions (see Section 3.4). In a semi-discrete form appropriate for the discrete
numerical model, the column mass budget is given by

0; (th) +00V-U=p, g0 (18.4)

with h the tracer cell thickness.
Integrating zonally and assuming either no-normal flow at the side boundaries,
or periodic boundary conditions, leads to the zonal and vertically integrated mass

budget
Xe n Xe Xe
0; (/dx /dzp) + po /dxayV:po /dxqw. (18.5)
Xw H Xw Xw

At steady state, the zonally integrated divergence of the vertically integrated merid-
ional velocity balances the zonally integrated fresh water flux

Xe Xe
/dx 9,V = /dx Jw steady state. (18.6)

If we first integrate from a southern latitude y = y; where V(y,) = 0 northward to
some latitude y = y,, and then zonally, we have the balance

Xe Yn

Xe Yn n Xe
0; ( dx /dy /dzp) + Do /dx V(yn) = po //dxdqu. (18.7)
X Ys —H Xw

w Xw Ys
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At steady state, the zonal and vertical integrated velocity at a particular latitude
balances the zonal and vertical integrated fresh water flux

Xe Yn

/de Yn) = //dxdqu steady state. (18.8)

Xw Ys

In the absence of a fresh water flux,

Xe
/ dxV(y,) =0  steady state with g, = 0. (18.9)

18.3 Integrated tracer budget

Following in a manner similar to the mass budget, we recall that the budget of
tracer for a semi-discrete parcel of model water (see [ ] for derivation)

01(phT) = —po V - (hF) — po h 0, F*, (18.10)

where we drop tracer source terms for simplicity. In this equation, # is the thickness
of the model grid cell, and F = (Fh, F?) is the combined advective and sub-grid-
scale tracer fluxes

F = v T+ Fygs. (18.11)

Integration over the depth of the ocean and along an i-line (the zonal direction
when using spherical coordinates), and assuming either solid walls or periodic
boundary conditions, renders

0 (%dxdyhﬂ) =P %5]' (dxhFY) = po y dxdy F_, (18.12)

where
5@ =00 — O (18.13)

is a difference operator acting on the fluxes passing across the meridional faces of
the tracer cells, and we employed the discrete divergence operator introduced in
Section 6.2. The vertical flux at k = 0 is given by (see [ D

Ff o = —qu Tw + QP (18.14)

with T, the tracer concentration in the fresh water, and QtT‘”b the turbulent flux of
tracer associated with sub-grid-scale processes.

At a steady state, the zonal integrated surface flux at a particular latitude is
balanced by the depth and zonal integrated meridional tracer flux convergence

Z 5 (dxh FY) Z dxdyF;_,  steady state. (18.15)

In the absence of surface tracer fluxes, the steady state flux moving northward must
balance that moving southward. The result reduces to equation (18.8) in the case
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of tracer concentration is uniform. Note that only for coordinates where dy is inde-
pendent of i (such as spherical coordinates) can dy be transferred to the right hand
side.

Now integrate from a southern row j = js where the meridional flux vanishes,
such as the Antarctic continent. At the northern row j = jn, the meridional and
zonal integrated surface flux is balanced at steady state by the net meridional flux
entering southward through the northern j-row boundary

j=jn
Z(dxh FV)icjin = — Z Z dxdy Ff_, steady state. (18.16)
2 T j=Js

This result reduces to equation (18.9) in the case of uniform tracer concentration
and zero surface tracer fluxes.

18.4 Northward tracer transport

In regions of the model where grid lines are spherically oriented, the zonally and
vertically integrated northward tracer transport is given by

prorth — o deh FY = p, de (vh T+ hFl). (18.17)
i, i

Typically this transport is dominated by the advective component. However, for
regions such as the Southern Ocean, contributions from neutral physics, contained
in Fsygs, can be nontrivial.

18.4.1 Decomposition of the meridional advective tracer flux

It is often useful to decompose the zonal and depth integrated meridional advec-
tive transport into various components. Because of the generally nontrivial bottom
topography and surface height, we find it convenient to decompose the thickness
weighted meridional velocity according to

vh = (0h—V/nk)+V/nk = vh+V/nk (18.18)
where
1 i 1 nk
O =—— dz® — ——— h® 18.19
H+n 4 : H+n k; ( )

is the depth average, and U = (U, V) = (H + n) u is the depth integrated hori-
zontal velocity. With this decomposition, the northward advective tracer transport
becomes

P Eifrey =y dx Y (0h) T (18.20)
1 k

_ de ;(V/nk+zﬁ1) (T+T) (18.21)

=Y dxVT+Ydxy ohT. (18.22)
7 1 k
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We now decompose fields according to their zonal mean and deviations therefrom

D = (0 — 0F) + 0% = &Y + OF (18.23)
where
17 1
X _
® _L/dxd)—>LdeCD (18.24)

X1

is the zonal mean. Introducing this decomposition yields

o Elth =5 dxVT+Ydx Yy ohT
1 1 k

= Lo VT + 5 de VT 4 Z 5 dx (oh TF +oh" T)
1 1

— L VET + S dx v ™ ¢ S Lok T%+ Z Y dx o T (18.25)
1 k 1

where Ly is the distance as a function of vertical depth level over which the zonal
integration takes place within sea water (i.e., land is not included).

18.4.2 Interpretation of terms

The utility of the above decomposition is that we can ascribe useful interpretations
for the different terms.

18.4.2.1 Mean advecting mean

The term
prorth = poLio VT (18.26)

mean—mean

represents the zonal and depth mean meridional velocity advecting the zonal and
depth mean tracer. In a steady state with no surface forcing, equation (18.9) showed
that mass conservation leads to V¥ = 0, and so F/9t" = 0. In general, however,
this transport is not zero.

18.4.2.2 Barotropic gyre transport

The term

B e = Po Y dx VYT (18.27)
1

is called the barotropic gyre transport. The gyre adjective refers to the presence of

zonal anomalies in both the vertically integrated velocity and vertically integrated

tracer. Such anomalies typically arise from wind forcing in ocean basins. This term

vanishes in a domain with zero zonal anomalies and/or with zero vertically inte-

grated flow.
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18.4.2.3 Baroclinic overturning transport

The term _
~X ~—
B =00 S Lol T (18.28)
k

is called the baroclinic overturning transport. The overturning adjective refers to
the presence of zonal averaged vertical shear terms for both the thickness weighted
velocity and the tracer. This transport typically arises from zonally averaged over-
turning circulation, such as that associated with thermohaline forcing. Note that
often one extracts from this term an Ekman component described in Section 18.4.3.

18.4.2.4 Baroclinic gyre transport

The term

U Z dxoh T% (18.29)
k

is called the baroclinic gyre transport. Again, often one extracts from this term an
Ekman component described in Section 18.4.3.

18.4.3 Ekman component

A further decomposition is often made to the shear component of the velocity v in
regions bounded away from the equator. Here, we decompose the velocity accord-
ing to

V= (Z/)\—f)\g) —|—6E = Z/)\B—{-Z/)\E, (18.30)
where
5 v (18.31)
VF = .
57 pofhe

is the meridional Ekman velocity over a depth of thickness /ig. The thickness of the
Ekman layer is often taken as the thickness of the first model level, though this is
not always appropriate, especially with models of fine vertical resolution.
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The purpose of this chapter is to detail a method to quantify water mass mix-
ing in MOM without detailed knowledge of the numerical transport scheme. The
method is restricted to experiments with a Boussinesq fluid, flat bottom ocean, lin-
ear equation of state, and without buoyancy forcing. Extensions are possible, yet
not implemented. Momentum forcing via winds is allowed. Much of the funda-
mentals in this chapter are guided by the work of [



230 CHAPTER 19. EFFECTIVE DIANEUTRAL DIFFUSIVITY

and [ ] [
applied these methods to various idealized model configurations.

We assume the linear equation of state for an incompressible fluid is written in
the form

p=rpo(l—ab), (19.1)

where 6 is potential temperature, p, is a constant density associated with the Boussi-
nesq approximation, and « is a constant thermal expansion coefficient. The system
is open to momentum fluxes yet closed to buoyancy fluxes.

19.1 Potential energy and APE in Boussinesq fluids

The purpose of this section is to introduce the notion of a sorted density profile in
the context of potential energy and available potential energy (APE). This profile is
of particular relevance when considering the effective mixing occuring throughout
a column of sorted fluid in Section 19.2.

Potential energy of the ocean is given by

E, = / 4V eP, (19.2)

where

P =gz (19.3)

is the potential energy per mass of a fluid parcel, g is the acceleration of gravity, z
is the vertical position of a fluid parcel, and pdV = pdx dy dz is the parcel mass.

Available potential energy (APE) is the difference between the potential energy
of the fluid in its natural state, and the potential energy of a corresponding stably
stratified reference state. The reference state is reached by adiabatically rearranging
the fluid to a state of minimum potential energy, which is a state that contains zero
horizontal gradients. This rearrangement, or sorting, provides a non-local mapping
between the unsorted fluid density and the sorted density

p(x,t) = p(z*(x,t),1). (19.4)

The sorting map determines a vertical position field z*(x, t) which is the vertical
height in the sorted state occupied by a parcel at (x, f) in the unsorted state. Due
to the monotonic arrangement of density in the sorted state, z*(x, t) is a monotonic
function of density p(x, f).

It is convenient to set the origin of the vertical coordinate at the ocean bottom so
to keep potential energy of the unsorted state non-negative. This convention also
allows for z*(x, t) to be defined as a monotonically decreasing function of density.
That is,

p(x1,t) < p(xp,t) = z*(xq,t) > z%(xp, t). (19.5)

Conservation of volume in a flat bottom ocean implies that the sorted fluid state
has the same vertical extent as the unsorted fluid, which renders

0<zz"<H, (19.6)

where H is the ocean depth.
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In the following, it proves convenient to denote the density profile in the sorted
reference state using the symbols

p(z*,t) = pref(z =z",t). (19.7)

Given this notation, the non-local sorting map between the unsorted and sorted
fluid states provides the equivalence

p(x, 1) = p(2"(x, 1), 1) = pres(z = 27, 1). (19.8)

In turn, potential energy for the sorted fluid state can be written in two equivalent
manners

Er = g/deprEf(z,t) (19.9)
= g / dVz*(x,t) p(x,t). (19.10)

Equation (19.9) represents an integral over the sorted fluid state, in which the den-
sity of this state is a function only of the depth. The horizontal area integral is thus
trivial to perform. Equation (19.10) represents an integral over the unsorted fluid
state, where the density p(x,t) of an unsorted parcel is weighted by the vertical
position z*(x, t) that the parcel occupies in the sorted state. It follows that the APE
can be written in two equivalent ways

Eare = g [ AV z[p(xt) = prer(z1)] (19.11)

= g/ dV p(x,t) [z — z*(x,1)]. (19.12)

19.2 Effective dianeutral mixing

In this section we formulate a method to empirically quantify the effects on water
masses arising from various simulated tracer transport processes. A similar appli-
cation was advocated by [

and [ | for the purpose of diagnosing mixing in direct
numerical simulations of unstable fluid flows. Their focus was on physically mo-
tivated mixing such as that occuring with breaking waves. The main focus here is
on spurious mixing due to numerical errors. The procedure is identical, however,
in that for each case, one considers the evolution of the reference density profile,
Pref(2,t), in a fluid system closed to buoyancy fluxes

0; Pref = 0 (Keff 0 pref)- (19.13)

Again, in this equation z* is the vertical position in the sorted fluid state. Therefore,
constant z* surfaces represent constant density surfaces in the unsorted state. As
such, the effective diffusivity ks summarizes the total amount of mixing across
constant density surfaces. If the simulation does not change the water mass distri-
bution, then Dp/Dt = 0, the sorted reference density is static 9; p,.f = 0, and the
effective diffusivity is zero. In turn, any temporal change in the reference density
represents changes in the water mass distribution. These changes are the result of
dianeutral mixing, and so have an associated non-zero «, ff(z*, t). This is the basic
idea that is pursued in the following sections.
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19.2.1 Global effective dianeutral diffusivity

In addition to the diffusivity «, ff(z*, t), which is local in density space, it is useful
to garner a summary of the overall dianeutral mixing occuring in an ocean model.
A vertical integral of k.f¢(z*,t) would provide such information. A quicker com-
putation of a global effective dianeutral diffusivity can be obtained by inverting the
variance equation for the sorted density

3, /dV oLp = —2 /dV ket (00rer)2. (19.14)

This result, derived for a closed fluid system, suggests the introduction of a global
effective diffusivity

(19.15)

at de p%ef
Kglobal(t) == 2
Zde (azpref)

This diffusivity provides one number that can be used to represent the total amount
of dianeutral diffusion acting over the full model domain. It vanishes when the
simulation is adiabatic, as does the effective diffusivity . ¢s(z*,t). However it is
generally different from the vertical average of k,¢s(z*, t).

19.2.2 Finite difference approximation

In the following, assume that the discrete sorted density is equally spaced in the
vertical with a separation Az*, and let the vertical coordinate increase upwards
from zero at the flat bottom ocean floor. Note that in general, Az* << Az, where
Az is the ocean model’s grid spacing. The reason is that all the Ny x N, x N, grid
points in the ocean model are sorted into the reference vertical profile, which has
a vertical range over the same extent as the ocean model: 0 < z,z* < H. As
a consequence, the vertical resolution of the sorted profile is Ny X N, times finer
than the N, points resolving the profile at a particular horizontal position in the
unsorted state.
On the discrete lattice, the vertical diffusive flux of the sorted density

F7 (z",t) = —Keff(2%,t) 0z Pref(2", 1) (19.16)

is naturally defined at the top face of the density cell whose center is at z*. As such,
the diffusion operator at the lattice point z*, which is constructed as the conver-
gence of the diffusive flux across a density grid cell, takes the discrete form

\ FZ (z*,t — At) — FZ (2" — Az*,t — At
— (0 FF) (2%, 1) ~ —< (2", ) Az*(z z )>.(19.17)

The time lag is necessary to provide for a stable discretization of the diffusion equa-
tion. The discretization of the flux is given by

FZ*(Z*,t) = _Keff(z*rt) az* pref(Z*/t)

Z" + A%z, t) — pref(2%, t))

. Pref(
N ks (27, 1) < f o (19.18)
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Since the flux is located at the top face of the density grid cell whose center is at
the position z*, the effective diffusivity is located at this face as well. Each of these
difference operators is consistent with those used in MOM when discretizing the
diffusion equation for the unsorted fluid.
As with the unsorted tendency, the time derivative in the effective diffusion
equation can be approximated using a leap-frog differencing:
pref(Z*, t+ At) — ,Oref(Z*, t— At)

0t Pref (27, t) = AT ) (19.19)

Piecing these results together yields the expression for the vertical flux at the
top of the density cell z* + Az*

z* (% z* (% * Az* * *

F* (z*,t — At) = F* (2" — Az",t — At) — SAT [Pref (2", t + At) — pref (27, — At)].
(19.20)

This flux can be determined starting from the ocean bottom, where is vanishes, and
working upwards. Without surface buoyancy fluxes, it also vanishes at the top of
the water column, resulting in conservation of | dz* p,¢(z*,t). After diagnosing
the flux from the tendency, the effective diffusivity can be diagnosed from

* Az*
Korr(z",t) = —F% (2%, < > . 19.21
eff( ) ( ) pref(Z* —I—AZ*,t) - pref(*zz t) ( )
The issues of what to do when the density gradient becomes small, as in weakly
stratified regions, is discussed in Sections 19.2.3 and 19.2.5.

19.2.3 Relevant vertical stratification range

In the stratified portions of the upper ocean, periods 277/N for buoyancy oscilla-
tions are roughly 10-30 minutes, smaller in the pycnocline, and in the deep ocean
periods are roughly 5-6 hours (see pages 55-56 of | D). The
squared buoyancy frequency for the sorted reference state is given by

g dPre f

N2 = —<
: po dz*

_ 8 doyy
- 1000 p, dz*’ (19.22)

where 0y,¢ = 1000 (p,es — 1) is the sigma value for the sorted density pyr(g/cm?).
Working with oy, is desirable for accuracy reasons. The observed range in buoy-
ancy periods provides a range over the sorted vertical profile’s stratification for
which a calculation of the model’s effective diffusivity will be performed:

dprey  1.035g/cm® 47
dz*  980cm/sec? T?'

(19.23)

where T(sec) is the period. With 1 x 60secs < T < 6 x 60 x 60secs defining the
period range, the corresponding vertical density gradient range is

d re
10" 2¢ /em* < 'sz < 1075 /cm?, (19.24)
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and the corresponding range for the sigma gradient is

d re
107g/cm* < ‘sz <102 /cm*. (19.25)

19.2.4 A useful test case

When coding the effective diffusivity algorithm, it has been found useful to com-
pare results with those from a different approach. Here, we horizontally average
(i.e., homogenize) the density field along a particular depth surface. In a model
with stable stratification, rigid lid, flat bottom, no-flux boundary, potential density
evolution takes the form

0:(p)"Y = —0.(wp)*Y + 0-(kp )™ (19.26)

where « is a vertical diffusivity and the angled-brackets indicate horizontally aver-
aged quantities. With zero advection, evolution occurs solely via vertical diffusion.
Hence, backing out an effective diffusivity for this horizontally homogenized sys-
tem yields «, regardless the horizontal /vertical stratification. It turns out that this
algorithm is far simpler to implement numerically, since it does not require sorting
nor interpolation to a prespecified sorted coordinate z*. Its results are in turn more
robust. Yet, importantly, they are relevant only for the case of no-advection, which
is not so interesting in general yet serves as a good check for specific cases.

19.2.5 Computational precision

Models run with pure horizontal and / or vertical diffusion theoretically show «.¢s >
0 (see[ ]Jand [

However, if the stratification range given by equations (19.24) or (19.25) is violated
by more than roughly an order of magnitude, then spurious values of k¢ tend to
arise. These spurious values include unreasonably large values for k¢ in regions
of very low stratification, and negative values in regions of very large stratification.
However, within the range given by equations (19.24) or (19.25), the computation
yields reasonable values. For stratification outside this range, s is arbitrarily set
to zero.

Another point to consider is that the stratification of p,.y shows much fine-scale
step-liked structure. Computing an effective diffusivity based on such a profile will
in turn show lots of noise. Averaging over the fine scales is therefore necessary to
garner robust answers. That is, the spurious mixing diagnostic is smoother when
having coarser vertical resolution. An objective means of averaging is to average
Pref vertically onto the same vertical grid used by the forward model in computing
the unsorted density state. If this vertical stratification is itself very fine, then spuri-
ous values of k.sr may still result, again due to not enough points of p,.r averaged
into a single layer.

19.2.6 Negative k,y

Those advection schemes which contain dispersion, such as centered differenced
advection, have leading order error terms that are not second order, but rather
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third order differential operators. Hence, the diagnosis of ks for these schemes
will likely to contain a fair amount of negative values. In turn, negative k. rf may be
interpreted as a sign of dispersion errors, which can create or destroy water masses.
Upon introducing convection into the model, much of these undershoots and over-
shoots created by dispersion are rapidly mixed. In turn, the resulting k. should
become positive upon introducing convection.

Another source of negative k.¢s apparently can arise simply due to the finite
sampling time and discrete grid, even in the case of pure diffusion. For example,
if there is a mixing event, and if this event is under-sampled in time, it is possible
that the sorted state may have density appear in a non-local manner. Such mixing
events will lead to negative k.. The ability to realize such values for , s motivates
a sampling time At equal to time step used to evolve the unsorted density.

19.2.7 A comment on convection

Although the relaxation experiments allow for a focus on adiabatic physics, in a
z-coordinate model there is no guarantee that an experiment will remain vertically
stable, especially if running with a nonzero wind stress. If convective adjustment is
then allowed, water mass mixing will occur. Hence, the experiments which focus
on advection must remove convective adjustment. In turn, the presence of convec-
tion is actually quite an important element in determining the effective amount of
spurious water mass mixing occuring in the model. The reason is that certain ad-
vection schemes, through dispersion errors, introduce unstable water which is then
mixed-out through convection. After determining the effective diffusivity from the
pure advection experiments, it is appropriate to then allow convection to occur and
to compare the amount of convection appearing with the various advection dis-
cretizations.

19.2.8 The experimental design

The framework developed in this section applies most readily to an ocean model
with a linear equation of state run without any buoyancy forcing. Since the model is
to be run with zero buoyancy forcing, it is necessary to spin-up to some interesting
state and perform various relaxation experiments. As a test of the algorithm to
compute Ky, it is useful to run a set of tests with pure horizontal and vertical
diffusion; no advection or convection. These experiments are necessary to establish
a baseline for later comparison. After being satisfied, a set of relaxation experiments
should be run with advection and/or other transport processes enabled.

19.3 An example with vertical density gradients

It is useful to present some examples which can be readily worked through by hand.
These examples highlight many of the points raised in the previous discussion, and
provide some guidance for interpreting the three-dimensional MOM results. Each
of these examples considers the dynamics of the unsorted and sorted density fields
when the unsorted field is affected by vertical and horizontal diffusion.
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The first example considers the initial density field shown in Figure 19.1. There
are a total of N = Ny Ny N, = (4 x 1) x 3 grid cells in this two-dimensional exam-
ple. The density field has zero baroclinicity. So the question is: How does this state,
and the corresponding sorted density state, evolve under the effects of vertical dif-
fusion? Note the grid dimensions for the two states are related through

Az =4 Az, (19.27)

where z is the vertical coordinate for the unsorted state, and z* is the vertical coor-
dinate for the sorted state. For the following, it is convenient to define this state as
that at time (f — Af). The potential energies of the unsorted and sorted states are
easily computed to be

E,(t—At) = 56p,8AzV (19.28)
Epf(t—At) = 56p,gAzV (19.29)
Eapp(t—At) = 0 (19.30)

where V is the volume of the grid cells, and p, is the density scale. The zero APE is
due to the absence of horizontal density gradients.

2

2

41 4| 4] 4 34z 4 12Az* = 3Az

Figure 19.1: The initial density field for the first example. The number in each
box represents the density, given in units of p,. The left panel shows the density
p(x,z,t — At) in the unsorted fluid state, and the right panel shows the density
Pref(z*,t — At) in the sorted state. Note that the vertical scale Az* = Az/4 for the
sorted state has been expanded for purposes of display.

19.3.1 Evolution of the unsorted state

Evolution of the unsorted density is given by the discrete equation

2 At
p(x,z,t+ At) = p(x,z,t — At) — <> [F*(x,z,t — At) — F*(x,z — Az, t — At)],

Az
(19.31)
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where the vertical diffusive flux is given by

F*(x,z,t) = —k 8;p(x, 2, 1)

p(x,z+ Az, t) — p(x,z,t) (19.32)
o ( Az ) '

Q

F*(x,z,t) is defined at the top face of the density grid cell whose center has position
(x,z). In the following, it is useful to introduce the dimensionless quantity

8wy = 2K At/(Az)*. (19.33)

This number arises from the chosen discretization of the diffusion equation. For
linear stability of the discretization, 5(v) < 1 must be maintained.

The top panel of Figure 19.2 shows the vertical diffusive flux through the cell
faces at time t — At, and the bottom panel shows the resulting density field p(z, z, t +
At). Density in the middle row does not change, whereas the upper row density
increases and the lower row density decreases. The potential energy of this state is

Ep(t+At) = pog Az V (56 + 85y ). (19.34)

This increase in potential energy is a result of the raised center of mass arising from
the vertical diffusive fluxes.
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Figure 19.2: Top panel: The vertical diffusive flux F*(x,z,t — At), in units of
po K/ Az, passing through the faces of the unsorted density grid cells. Bottom panel:
The unsorted density field p(x,z,t + At), in units of p,, where the dimensionless
increment & is given by § = 268(,) = 4k At/(Az)?. This density field results from
the vertical convergence of the flux F*(x, z,t — At).
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19.3.2 Evolution of the sorted state

Corresponding to the evolution of the unsorted density, there is an evolution of the
sorted density

Dref (2", 4+ AF) = ppos(2”, £ — AF) — <2Aff> (2% — Af) — F7 (2" — Az" £ — AY)].
(19.35)
The dianeutral diffusive flux is
FZ*(Z*,t) = —Keff(Z*,t) 5Z*p,ef(z*,t)
z* + Az*, f) — z*t (19.36)
~ —Kepf(2", 1) <pref( Azi Pre )> ,

where py.f (2%, t) is the sorted state’s density. F* (z*,¢) is defined at the top face of
the sorted density grid cell whose center has height z*. Given the time tendency for
the sorted state, the flux is diagnosed through
(2t — At) = F¥ (2" — A", £ — At) — (AZ> re (2%, -+ AE) — prop(2", £ — AB)].
’ ’ At ref\~ s ref\~ s

(19.37)
The left panel of Figure 19.3 shows the sorted density field p,r(z*,t + At), and
the second panel shows the diagnosed vertical diffusive flux F? (z*,t — At). The
third panel shows the vertical density gradient [p,.f(z* 4+ Az*, t — At) — ppf(2*, t —
At)]/Az*. The fourth panel shows the effective diffusivity «.f¢(z*,t — At), which is
diagnosed from the relation

. Az*
“t—At) = —F7 (2"t — At :
Kgff(Z ) (Z ) <Pref(Z* + Az* t — At) _ pref(Z*rt — At))

(19.38)
The units for k.f¢(z*,t — At) are (Az*)?/At. Hence, a value for k.f¢(z*,t — At) of
2 ¢ in Figure 19.3 indicates a dimensional value of

(Az*)?
At

4At (Az*)? (19.39)
(Az)2 At

= k/4.

Keff(z*,t —At) =26

=K

This example illustrates a problem with unstratified parts of the sorted profile.
As evident from Figures 19.1 and 19.3, the 12 sorted boxes are actually three larger
homogeneous boxes, and so the calculation should compute fluxes and diffusivi-
ties for these three boxes rather than for the 12 boxes. Figure 19.4 shows such a
combined system, where there are three boxes each of height Az comprising the
sorted state. Repeating the previous calculation for this configuration recovers the
expected k.rs = k on the two interior interfaces. Note that there is no ad hoc setting
to zero certain values of k,fs associated with unstratified portions of the profile.

As a final note, the potential energy of the sorted state at time f + At is

Enof(t+ At) = po g Az V (56 + 16 5(,), (19.40)
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Figure 19.3: First panel (left): The sorted density field p,, f(z*, t + At), in units of p,.
Second panel: The vertical diffusive flux F? (z*,t — At), in units of p, Az*/(2 At),
passing through the faces of the sorted density grid cells. Third panel: The vertical
density gradient [p,r(z" + Az*,t — At) — prp(2*,t — At)]/Az" in units of p,/Az*.
Fourth panel: The effective diffusivity k.¢f(z*, t — At) in units of (Az*)?/At.
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Figure 19.4: First panel (far left): The initial density field p,.¢(z*,t — At), consisting
of the combination of the three groups of four homogeneous cells. The values are
given in units of p,. In this recombined arrangement, Az* = Az. Second panel:
The vertical density gradient [py.(z* + Az*, t — At) — pof(2z*, t — At)] /Az*, in units
of py/Az*. Third panel: The density pref(z*,t + At) in units of p,. Fourth panel:
The diffusive flux F*" (z*,t — At). Fifth panel (far right): The effective diffusivity

Keff(z*, t— At).
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which is higher than the initial potential energy as a result of the raised center of
mass. The APE remains unchanged

Eape(t+ At) =0, (19.41)

as it should since there remains zero baroclinicity in the final state.

19.3.3 Caveat about weakly stratified regions

Note that in this example, the same set of boxes are perfectly homogenized at each
time step. As such, it is straightforward to combine the boxes in order to derive
their effective diffusivities. In general, this simple situation will not be true, and
so the effective height of the combined boxes will differ. Furthermore, most cases
of homogenization are approximate (Sections 19.2.3 and 19.2.5), which introduces
even more time dependence to the interfaces between effectively homogeneous
boxes. In order to compute an effective diffusivity, however, our algorithm needs
to evaluate all quantities at the same depth level z*. Time dependent z* is problem-
atical.

The current example suggestes that one possibile way to account for homoge-
nization is to count the number of nearly homogeneous boxes occuring in a par-
ticular section of the sorted column. When the first interface is reached that has
a nontrivial stratification, then the effective diffusivity computed for this interface
is multiplied by the number of trailing boxes which are homogeneous. This trick
works for the example just considered (k/4 x 4 = k). However, in the example
considered in Section 19.4.2, it leads to an effective diffusivity which can be larger
than the horizontal diffusivity. Such is not possible, and so one is led to reject the
proposed patch. A clean way to proceed is to try to resolve as best as possible
the stratification within the sorted fluid state. For those regions which are simply
too weakly stratified, it must be recognized that the computed effective diffusivity
might be smaller than a more refined computation.

An alternative approach is to average the sorted density field onto the discrete
levels realized in the unsorted state. Indeed, this resolution of the sorted state is ar-
guably that which is relevant for diagnosing the effective diffusivity. This is the ap-
proach taken with the MOM experiments documented in [

19.4 An example with vertical and horizontal gradients

This example considers the initial unsorted density configuration is shown in Fig-
ure 19.5. There are three rows of four boxes stacked on top of one another, and there
are both vertical and horizontal density gradients. Also shown is the correspond-
ing sorted state. As with the example in Section 19.3, the grid dimensions for the
two states are related through Az = 4 Az*, where z is the vertical coordinate for the
unsorted state, and z* is the vertical coordinate for the sorted state. The potential
energies are

E,(t—At) = 110p,gAzV (19.42)

Enf(t—At) = 98p,gAzV (19.43)
Eape(t—At) = 12p,gAzV, (19.44)



242 CHAPTER 19. EFFECTIVE DIANEUTRAL DIFFUSIVITY

where V is the volume of the boxes and p, is the density scale.
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Figure 19.5: The initial density field for the horizontal and vertical diffusion ex-
amples. The number in each box represents the density, given in units of p,. The
left panel shows the density p(x, z, t — At) in the unsorted fluid state, and the right
panel shows the density p,, f(z*,t — At) in the sorted state. Note that the vertical
scale Az* = Az/4 for the sorted state has been expanded for purposes of display.

19.4.1 Vertical diffusion

Consider first just vertical diffusion acting on the unsorted state. The vertical diffu-
sivity k acting on the unsorted state is assumed to be uniform and constant.

19.4.1.1 Evolution of the unsorted state

Evolution of the unsorted density is given by the discrete equation

2 At
p(x,z,t+ At) = p(x,z,t — At) — (Az) [F*(x,z,t — At) — F*(x,z — Az, t — At)],
(19.45)
where the vertical diffusive flux is given by
F*(x,z,t) = —k 6,p(x, 2, 1)
(,o(x, 2+ Az, t) — p(x,z,t) ) (19.46)
R —K ~ .

F*(x,z,t) is defined at the top face of the density grid cell whose center has height
z. The top panel of Figure 19.6 shows the vertical diffusive flux through these faces
at time t — At, and the bottom panel shows the resulting density field p(x,z,t +
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At). Density in the middle row does not change, whereas the upper row density
increases and the lower row density decreases. The potential energy of this state is

Ey(t+ At) = p,g Az V (110 + 16 6(,)), (19.47)

which is higher than the initial potential energy as a result of the raised center of
mass.
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Figure 19.6: Top panel: The vertical diffusive flux F*(x,z,t — At), in units of
po K/Az, passing through the faces of the unsorted density grid cells. Bottom
panel: The unsorted density field p(x, z, t + At), in units of p,, where § = 2 d) =
4k At/(Az)?. This is the density field resulting from the vertical convergence
of the flux F*(x,z,t — At). The potential energy of this field is E,(t + At) =
Pog Az V (110 + 164(,))-

19.4.1.2 Evolution of the sorted state

Corresponding to the evolution of the unsorted density, there is an evolution of the
sorted density which is given by

2 At s .
Pref (2%, t+ At) = prf(2°, £ — At) — <*) [F* (z*,t — At) — F* (2" — Az, t — At)].

Az
(19.48)
The dianeutral diffusive flux is given by

FZ* (Z*,i') = _Keff(z*/t) 52*,0,,6]((2*,1')

* Pre (Z* + AZ*/ t) — Pre (Z*/ t) (1949)
™ ey ( : v )
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where p.f(z*, t) is the sorted state’s density. F* (z*, ) is defined at the top face of
the sorted density grid cell whose center has height z*. Given the time tendency for
the sorted state, the flux is diagnosed through
(2t — At) = F¥ (2" — Az", £ — At) — (AZ) (rof (2%, £+ AE) — prop(2", £ — AB)].
7 ’ IAF f ’ ref 7

(19.50)
The left panel of Figure 19.7 shows the sorted density field p,r(z*,t + At), and
the second panel shows the diagnosed vertical diffusive flux FZ (z*,t — At). The
third panel shows the vertical density gradient [py.r(z* + Az*, t — At) — prp(z*, t —
At)]/Az*. Note the regions of zero stratification. The fourth panel shows the effec-
tive diffusivity , ff(z*, t — At), which is diagnosed from the relation

. Az*
L E— Ab) = —F% (2%t — At :
eff (2 ) = ) <pref(Z* FAZE— AE) — (2, — At))

(19.51)
The units for k.¢f(z*, t — At) are (Az*)?/At. In addition, consistent with the dis-
cussion in Section 19.3.2, the effective diffusivity for the interfaces on top of un-
stratified water are multiplied by the number of unstratified boxes. A value for
Keff(z*,t — At) of § in Figure 19.7 indicates a dimensional value of

*\2
Kgff(z*,t—At) = 5(AZt)
_ Aat (Azp
(Az)2 At
= «/4. (19.52)

As a final note, the potential energy of the sorted state at time t + At is
Ef(t+At) = po g AzV (98 +75(), (19.53)

which is higher than the initial potential energy as a result of the raised center of
mass. The APE is therefore given by

Eape(t+ At) = pyg Az V (12 +116(,)), (19.54)

which is larger than E 4pg(t — At) given in equation (19.44).

19.4.2 Horizontal diffusion

Consider now just horizontal diffusion acting on the unsorted state. The horizontal
diffusivity A acting on the unsorted state is assumed to be uniform and constant.
19.4.2.1 Evolution of the unsorted state

Evolution of the unsorted density is given by the discrete equation

2 At
p(x,z,t+ At) = p(x,z,t — At) — () [F¥(x,z,t — At) — F*(x — Ax, z,t — At)],

Ax
(19.55)
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Figure 19.7: Left panel: The sorted density field p,.f(z*, t + At), in units of p,. Sec-
ond panel: The vertical diffusive flux F? (z*,t — At), in units of p, Az* /At, passing
through the faces of the sorted density grid cells. Third panel: The vertical density
gradient [pyr(z" + Az*,t — At) — pp(z*,t — At)]/Az* in units of p,/Az*. Fourth
panel: The effective diffusivity k.f¢(z*,t — At) in units of (Az*)?/At. The four k¢
values which are on top of unstratified portions of the p,.f(z*, t — At) profile have
been multiplied by the number of unstratified boxes which lie directly beneath it.
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where the horizontal diffusive flux is given by

Fx(x/ Z, t) = _A 5xp(x/ z, t)
~_A (p(x + Ax, z,t) — p(x, z,t)) (19.56)

Ax

F*(x, z, t) is defined at the east face of the density grid cell whose center has position
(x,z). The top panel of Figure 19.8 shows the horizontal diffusive flux through
these faces at time t — At, and the bottom panel shows the resulting density field
p(x,z,t + At). The potential energy of this state is the same as the initial potential
energy, since the horizontal fluxes are parallel to the geopotential

E,(t+ At) = Ep(t — At) = 110 p, g Az V. (19.57)

19.4.2.2 Evolution of the sorted state

Corresponding to the evolution of the unsorted density, there is an evolution of the
sorted density which is given by

2 * *
pref(z*/ t+ At) = pref(Z*/ t— At) B (A§:> [FZ (Z*’ t— At) —F (Z* — Azt — At)]-
(19.58)
The dianeutral diffusive flux is given by
F?(z",t) = —Keff(2%, ) Oz pref (2", 1)
z¥ 4+ Az*,t) — z*,t (19.59)
~ _Kgff(z*/t) (pref( Azi Pref( )> ’

where p.¢(z*, t) is the sorted state’s density. F* (z*, ) is defined at the top face of
the sorted density grid cell whose center has height z*. Given the time tendency for
the sorted state, the flux is diagnosed through

F? (z%,t — At) = F* (z* — Az", t — At) — (?;) [Pref (2", £+ At) — pref (2", t — At)].

(19.60)
The left panel of Figure 19.4.2.2 shows the sorted density field p,, f(z*, t + At), and
the second panel shows the diagnosed vertical diffusive flux F? (z*,t — At). The
third panel shows the vertical density gradient [p,.f(z* + Az*, t — At) — prf(2*, t —
At)]/Az*. Note the regions of zero stratification. The fourth panel shows the effec-
tive diffusivity «, ff(z*, t — At), which is diagnosed from the relation

. Az*
Kprr(z*,t — At) = —F% (z",t — At < )
eff ( ) ( ) Pref(z* + Az*, t — At) — ppof(2*,t — At)

(19.61)
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Figure 19.8: Top panel: The horizontal diffusive flux F*(x,z,t — At), in units
of p, A/Ax, passing through the faces of the unsorted density grid cells. Bottom
panel: The unsorted density field p(x, z, t + At), in units of p,, where 6 = 2 Sy =
4 A At/(Ax)?. This is the density field resulting from the vertical convergence of the
flux F*(x, z,t — At). The potential energy of this field is E, (t + At) = 110 p, g Az V.
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The units for k.¢¢(z*, t — At) are (Az*)? /At. For example, a value for k¢ (z*, t — At)
of 36/2 in Figure 19.4.2.2 indicates a dimensional value of

(19.62)

For the special case of Ax = Az = 4Az*, the effective diffusivity is 3A/8. Note
that if the patch proposed in Section 19.3.3 is used, then the 36 /2 diffusivity would
become 94/2, leading to the possibility for an effective diffusivity of 9 A/8, which

is impossible.
As a final note, the potential energy of the sorted state at time t + At is

Evef(t+ At) = pog Az V (98 + 1951, /2), (19.63)

which is higher than the initial potential energy as a result of the raised center of
mass. The APE is given by

Eape(t+ At) = p,g Az V (12— 195 /2), (19.64)

which is smaller than E 4pg (t — At) given in equation (19.44).
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Figure 19.9: First panel (far left): The sorted density field p,.f(z*, t + At) in units of
po- Second panel: The vertical diffusive flux F# (z*,t — At), in units of p, Az* /At,
passing through the faces of the sorted density grid cells. Third panel: The vertical
density gradient [p,f(z" + Az*,t — At) — prp(z*,t — At)]/Az" in units of p,/Az*.
Fourth panel: The effective diffusivity k.f¢(z*, t — At) in units of (Az*)?/At. The
four k.¢¢ values which are on top of unstratified portions of the prgf(z*,t — At)
profile have been multiplied by the number of unstratified boxes which lie directly

beneath it.
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Age tracers are perhaps the simplest nontrivial passive tracers commonly used
in ocean modeling. They provide the modeler with a visual means to deduce the
time that a water parcel has spent circulating after having been in contact with a
certain part of the domain. The purpose of this chapter is to present the basics for
how mom4 computes age tracers.

20.1 Fundamental considerations

Fluid parcels generally contain material constituents that are transported as the
parcel moves through the ocean. These constituents are commonly termed tracers
since they are useful for tracing pathways of fluid transport.

Material tracers have a total mass within a fluid parcel written

dMc = (dM)C = (pdV)C, (20.1)

where dM = pdV is the total mass of the parcel of seawater, and C = dMc¢ /dM
is the mass of tracer per mass of seawater. C is often termed the tracer concentration
or tracer mass fraction. Notably, since the seawater mass and tracer mass are both
scalar quantities, the tracer concentration is likewise a scalar field. Hence, trac-
ers are often called scalars in the fluid dynamics literature. Additionally, when the
tracer concentration C is uniform throughout the ocean, the budget for tracer mass
reduces to the budget for seawater mass. This observation, which follows from
the definition of C, provides an important compatibility constraint between mass
and tracer budgets that should be maintained in numerical simulations. Otherwise,
spurious source/sinks can cause tracer or mass to form in unphysical manners.
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Conserving tracer mass within a parcel of seawater leads to the conservation
statement

d[(pdV)C] dc
ar - edV) g (20.2)
—0,

where we used mass conservation d(pdV)/dt = 0. Combining the Eulerian form
of material tracer conservation dC/dt = (0; + v - V) C = 0 with mass conservation
pt+ V- (pv) = 0leads to the Eulerian conservation law for tracer mass per volume
p C within in a seawater parcel

(pC)+V-(pCv)=0. (20.3)

Additional terms appear on the right hand side when sources or sinks of tracer are
found within the fluid or at the boundaries.

For purposes of establishing the momentum and tracer budgets, the mass of
a Boussinesq seawater parcel is given by dM = p,dV. Material conservation of
tracer mass (p, dV) C still leads to material conservation of tracer concentration:
dC/dt = 0, since now the parcel’s volume is conserved. Combining material con-
servation of tracer concentration with parcel volume conservation, V - v = 0, leads
to the Eulerian conservation law

Ci+V-(vC)=0. (20.4)

There are two main ways that the mass of tracer within a seawater parcel can
change. First, there can be tracer-dependent sources or sinks of tracer mass p S(C)
within the fluid domain or at the boundaries. Second, there can be irreversible
molecular or turbulent mixing effects that move tracer mass between parcels. Many
of these mixing effects can be mathematically represented by the convergence of
a density weighted tracer flux pF. Hence, for a non-Boussinesq fluid, the time
tendency for density weighted tracer concentration is written

(0C)y=—V-(pCv+pF)+pSO), (20.5)
whereas for a Boussinesq fluid it is

Ci=-V-(Cv+F)+8©. (20.6)

20.2 Age tracers

As discussed in many places, such as [ Jand [

age tracers are defined by the source term S(©) appearing in equations (20.5) and
(20.6), as well as the initial and boundary conditions. The source is set to unity
everywhere within the ocean fluid

S© =1, (20.7)

This prescription specifies that the age field C has units of time. Hence, the age
tracer is somewhat distinct from the material tracers discussed in Section 20.1,

)
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where C for material tracers is a dimensionless field (such as salinity). At a re-
gion of interest, say the ocean surface, the boundary condition for the age tracer is
zero. In mom4, one defines various age tracers that differ by the region that their
boundary condition is set to zero. For all of the age tracers, the age is set to zero at
the initial time of the experiment.

Given these prescriptions, C measures the age, in units of time, that a water
parcel has spent away from the region where it was set to zero. Therefore, visual
maps of C are useful to deduce such physically interesting properties as ventilation
times.
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Miscellaneous Topics
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MISCELLANEOUS TOPICS

This part of the MOM4 Guide contains discussions of various topics that do not
cleanly fall into other parts.
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The purpose of this chapter is to present certain issues related to the equation
of state used to compute density and its partial derivatives. The discussion follows
thatin [ ].

21.1 Introduction

Density is needed to compute the hydrostatic pressure. Additionally, it determines
the static stability of a vertical fluid column. Finally, its derivatives with respect to
potential temperature and salinity

6,o>
o= (1.1)
00 ps

05 = (a”) (212)
ds 9,0

set the neutral directions used for sub-grid-scale tracer transport. Therefore, it is im-
portant that the equation of state be accurate over the range of temperature, salinity,
and pressure values occurring in ocean simulations.
In early versions of MOM, density was computed according to the [

cubic polynomial approximation to the UNESCO equation of state ([ D.
That approach was quite useful for certain problems. Unfortunately, it has limita-
tions that are no longer acceptable for global climate modeling. First, the polyno-
mials are fit at discrete depth levels. The use of partial cells makes this approach
cumbersome since with partial cells it is necessary to generally compute density at
arbitrary depths. Second, the cubic approximation is inaccurate for many regimes
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of ocean climate modeling, such as wide ranges in salinity associated with rivers
and sea ice. For these two reasons, a more accurate method is desired.

Two equations of state (EOS) are currently available in MOM4 for computing
density. The first is a linear equation of state whereby density is a linear func-
tion of potential temperature and salinity. This EOS is relevant only for ideal-
ized simulations with the Boussinesq approximation. The second EOS is that pro-
posed by [ ] and up-
dated by [ ]. As
they argue, their EOS is more accurate than the UNESCO EOS due to the use of
more accurate empirical data as reported in [ I
and [ ]. Even given its high degree of accuracy, this EOS has been
found to be relatively efficient.

21.2 Comments on highly accurate equations of state

Although there are portions of ocean climate models that are computed less accu-
rately than density resulting from the [

or[ ] equation of
state, there is little reason to compromise the integrity of the density calculation to
remain equitable with the less accurate algorithms. In particular, there are three
main reasons favoring the use of accurate EOS formulations.

e Many important details of deep water transformations, thermal wind com-
putations, and tracer transport depend on an accurate EOS. Furthermore, re-
alistic ocean climate models with increasing resolutions are put into regimes
where temperature, salinity, and pressures vary over broad ranges. Hence, it
is important to employ an EOS that can span this range without compromis-
ing the integrity of the computed density or density partial derivatives.

e The| ]EOSis very

efficient, so its cost is much less than earlier experiences coding the UNESCO
form taken from [ Jor [ ].

e Use of a realistic EOS in a z-coordinate model comes without the price of com-
plex algorithms, in contrast to the situation with isopycnal models. Hence, it
makes sense to provide z-models with the capability of computing highly ac-
curate equilibrium thermodynamic properties.

21.3 Linear equation of state

The default linear equation of state in MOM4 assumes that density is a linear func-
tion of potential temperature and salinity. There is no pressure dependence. The
form used is

p(x,t) = po — &0(x, t) + Bs(x,t). (21.3)
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The default settings are

& = 0.255kg/m?/°K (21.4)
B=0 (21.5)
po = 1035kg/m°. (21.6)

Hence, the density partial derivatives are given by

po=—& (21.7)
ps=P. (21.8)
Due to the absence of pressure effects, this density is most correctly thought of as a

potential density. Hence, without compressibility, its use for computing pressure is
self-consistent only when employing the Boussinesq approximation.

214 McDougall, Jackett, Wright, and Feistel’s EOS

[ LI ],and [ ] studied the equilib-
rium thermodynamics of seawater and produced a more accurate EOS than UN-
ESCO by using more recent empirical data. [

produced a fit to [ ] to render an expression convenient for
use in ocean models, and [
updated this equation of state based on [ ]. MOM4.0 has the [

equation of state, with future versions of MOM moving to the [

version. Either EOS is highly recommended for purposes of realistic ocean climate
simulations, where accuracy over a wide range temperature, salinity, and pressure
is crucial. The following equation has been fit over the range

Opsu < s < 40psu (21.9)

—3°C <6 <40°C (21.10)

0db < p < 8000db. (21.11)

The EOS has 25 terms. Its general form is motivated by that of [ ].
Appendix B to [ ] pro-

vides the following equation for in situ density p written in terms of pressure, salin-
ity, and potential temperature

P 1 (S ’ 9/ p )
Pa(s,6,p)’
where p is the guage pressure in units of decibars, 0 is the potential temperature

referenced to zero pressure in units of Celsius, and s is salinity in psu. Note the
conversion between mks pressure and decibars is given by

p(s,0,p) = (21.12)

10~*db = 1Pa. (21.13)
The gauge pressure is given by

P = Pupsoiute — 10.1325dbars (21.14)



262 CHAPTER 21. EQUATION OF STATE CONSIDERATIONS

where the absolute pressure is the in situ pressure measured in the ocean. Salinity
is measured in practical salinity units (psu), consistent with modern oceanographic
measurements. As emphasized in [

this salinity is distinct from the salt concentration in parts per thousand. To a good
approximation, a constant factor distinguishes the two

s(ppt) = 1.004867 s(psu) (21.15)

The salinity variable in mom4 is interpreted as psu salinity, since this facilitates
a more direct comparison with observations. Notably, to perform salt budgets for
diagnostic purposes, it is necessary to multiply by 1.004867 to generate salt budgets
in terms of mass of salt.

A check value for this equation is p = 1033.213387 kg. m 3 with s = 35psu,
6 = 20°C, and p = 2000db = 2 x 10”Pa. The polynomial functions P; and P, are
given by

Pi=a,+a10+a,0%+a30% +ass+ ass 0+ ag s

+ayp+agp6® +agps + ay p* +an p* 6° (21.16)
b, :bo—|—b19—|—b292—|—b393—|—b494+b5s+b659+b7593+b853/2+b953/292
+bigp+ b1 p* 6% + bia p’ 6. (21.17)

The coefficients a,, and b, are tabulated in Appendix B of |
Rearrangement in order to reduce multiplications leads to

Py =a,+0(a;+0(ax+a30)) +s(as +as0 +ags)

+p (ay + ag 62 +ags+p (alo +an 92)) (21.18)
Py =b,+0(by+60(by+60 (b3 +0by))) +s (bs + 0 (bg + by 6%) 4+ s'/2 (bg + bg 6%))
+p (blo + PQ (bll 92 + b12 p)) (21.19)

The density partial derivatives are
ap 1 6P1 1 0P2
g _ (L (9B 1 [of 21.2
<69>s,p p<P1 <69>s,p P <69>s,p) ( 0
o0\ _,(1(m) _1 (on o
aS le Pl aS G/P Pz aS le ' '

Since divisions are computationally more expensive than multiplications, we find
it useful to rearrange these results to

%), e (%), (%),

= (Py) P (21.22)
<aa T 2 )., 0/,

op B 1 0P, _ or,

<as>9,p B (PZ) [<65>9,p ? < 0s >Q,p] (2123)
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where (P,)~! can be saved in a temporary array, thus reducing the number of divi-
sions from four to one.! The partial derivatives are given by

(%%)Sp =a;+2a,0+3a36° +ass+2agp0+2ay; p*0 (21.24)

<06121>9,p =as+as0+2ass+agp (21.25)

(3313)” = by +2by0+3b36° + 45,07+ bes+3bys 0%+ 2bys¥20  (21.26)
+3by p? 0> + b p?

<661:2)9p = bs + bg O+ by ° + (3/2) b sV/2 + (3/2) by s1/2 6 (21.27)

with rearrangement leading to

<aaI;1> =a1+0(2a2 +30a30) +a55+2p0 (ag + a11 p) (21.28)
s,p
<6Pl> =ag+as0+2ags+agp (21.29)
0s o,
<61;2> = b1 +0(2b, + 0 (3b3 +4b46)) +5 (bs + 0 (3b70+2bgs'/?)) (21.30)
s,p
+ 2 (3b11 6% + b1y p)
<6?> = b5 + 0 (bs + b7 %) + (3/2) s'/% (b + by 62). (21.31)
o,p

IWe thank Trevor McDougall for pointing out this simplification.
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The purpose of this chapter is to present the method used in mom4 for prescrib-
ing open boundary conditions. It contains many details, because the numerical
scheme for the open boundary conditions need adjustment depending on details of
the model setup. Additionally, the code has not been finalized, although it has been
thoroughly tested. This chapter was written by Martin Schmidt

martin.schmidt@io-warnemuende.de

22.1 Introduction

Numerical circulation models of marginal seas with biological, chemical and sed-
iment dynamic components require a high model resolution and involve a large
number of variables. Hence, a regional model is the only realistic implementation
with a reasonable amount of computer resource consumption. Mostly, the exchange
of mass, heat, momentum and dissolved or suspended matter with the outer ocean
is important. At the model boundary an open boundary condition (OBC) must
apply, which permits flux out of - and into the model area.

The formulation of boundary conditions at the boundary of the model domain
reveals as a complex problem. The required general boundary condition is the so-
lution of the hydrodynamic equations at the boundary itself, which is basically
unknown. Hence, assumptions on the nature of the flow near the boundary are
needed. To be more specific, consider a large model ocean, which is subdivided
into a western and an eastern subbasin by a virtual boundary. Wind forcing, heat
flux or fresh water flux in the eastern subbasin may drive elevation of the sea sur-
face, currents and changes in the density field as well. The information on such
events in the eastern part is transmitted to the west by waves, at large time scales
also be advection.

If the virtual boundary coincides with the open western boundary of a regional
submodel of the eastern subbasin, the results of the regional submodel and those of
a larger model must be the same. Hence, waves generated in the eastern subbasin
must be able to pass an open boundary without reflection and refraction, just as if
it was not there.

A basic assumption which is made for most implementations of open boundary
conditions is, that the ocean dynamics near the boundary is governed by processes



268 CHAPTER 22. OPEN BOUNDARY CONDITIONS

in the model interiour. If the model equations were exactly linear, hyperbolic and
non-dispersive, a Sommerfeld radiation condition could be used as open bound-
ary condition, which allows for outgoing waves only. However, the phase speed of
gravity waves in the ocean depends on wave number and wave frequency because
of the rotation of the earth which complicates the implementation of boundary con-
ditions considerably. In addition, at time scales well above the inertial period, ocean
flow becomes geostrophically balanced and also nonlinear processes may play an
important role.

The assumption, that the ocean dynamics at the model boundary is mainly de-
termined by the model interior may be a desired model property but is far from
beeing realistic. The information on processes in the western subbasin must be
passed to the model in an appropriate manner. Favorably, boundary values for sea
level, currents and tracer concentration at the boundary could be prescribed if they
would be known. However, this is also an unrealistic desire, since it presumes, that
the results of the model calculations which should be performed, are just known at
the model boundary. Such a database could be built by a sequence of model runs,
the first one with a large model domain and repeated runs with a reduced model
domain and boundary values from the previous run. Although this is of some inter-
est for the development of expensive models as ecosystem models, such solutions
are of minor importance here.

Usually, little is known on processes outside a model domain and rough approx-
imations for the boundary values must be used. But, even if a sufficient amount of
boundary values is available, e.g. from measurements, the prescribed data set could
be inconsistent with the interior model dynamics because of approximations made
for the model equations and numerical solution schemes.

Hence, the model boundary condition must handle internal processes known
from the model integration and external processes, which are only partly known or
even unknown. The problem is, that a numerical model deals with numbers and in-
coming and outgoing waves at the boundary can be hardly separated without any
assumptions on the physical nature of flow near the boundary. Hence, prescribed
quantities which are not completely consistent with the interior model dynamics
disturb outgoing waves and may lead to unphysical wave reflections at the bound-
ary. On the other hand, neglect of incoming waves may disregard important pro-
cesses within the model domain driven or triggered from outside. Consequently,
the numerical scheme at the open boundary can be only a compromise. For pro-
cesses within the model domain, the boundary should be passive, i.e., waves from
the model interior must leave the model domain without distortion. In turn, for
processes outside the model domain which are important for the model dynamics,
the boundary must be active, the model dynamics must receive information on pro-
cesses outside of the model domain. This is not an “either-or” the open boundary
must behave as passive and active at the same time.

As an example for an open boundary which are passive and active at the same
time consider a semi-enclosed or marginal sea where the model domain ends at a
narrow or shallow connection to the open ocean. If wind forcing over the model do-
main drives water into the model area, Kelvin waves propagate towards the model
boundary switching on inflow there. In this case the boundary must be passive and
the Kelvin waves should pass the model domain without reflection. At the same
time the boundary must be active for heat- or saltflux, since information on the
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properties of the inflowing water is needed.

As such, the boundary condition is not the numerical implementation of ex-
act physical laws but requires many assumptions and approximations. Differently
from the other model components it should be considered as an engineering tool,
which must be tuned to find a reasonable compromise for the special model pur-
poses. Nevertheless, the numerical properties of this tool should be known and will
be discussed from analytical considerations and at the example of idealized model
setups.

The implementation of OBC has been subject of many papers and technical re-
ports. For a recent review see the paper of [ |
and [ ] as well as the references therein. The implemen-
tation of open boundary conditions depends on the model grid type, model resolu-
tion and model integration time. The present scheme in MOM-4 is for the Arakawa
B-grid. Itis based on a radiation condition and follows in general the approach used
by [ l. They have been applied successfully for the FRAM-model
( ]) and for regional North Atlantic models ([

Animplementation of A. Biastoch had been part of MOM-2 and MOM-3 ([

and [ ). The open boundary conditions for the ex-
plicit free surface scheme is based on the methods applied by [ ] fora
circulation model of the Baltic Sea ([

22.2 One-dimensional, linear, non-rotating waves

Before we investigate the implementation of numerical schemes for open bound-
aries, the mathematical problems at open boundaries should be shortly discussed.
As the first item we consider the behaviour of waves near an open boundary. We
consider a long zonal channel and study non rotating, linearized, frictionless and
barotropic gravity waves. The basic equations are the momentum equations for the
vertically integrated flow U, V

U+gHs = X, (22.1)
. on
v+ gH@ =Y (22.2)

and the equation of continuity
o ou ov

1 denotes the sea level elevation, X and Y are the wind stress components, H the to-
tal depth and g the gravitational acceleration. Fresh water flux has been neglected.
These equations can be combined to a single equation for the sea level elevation,

.0 on 0 on\ aix al

We consider an initial value problem for time ¢t = 0. The sea surface has a well

D
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defined shape 1y, the initial velocity is given.

n(xy0) = mo(xy), (22.5)
U(xy0) = Uy(xy), V(xy0) = Vo(xy), (22.6)
N L 11
n(xy0) = rio(xy) = < o T 5 ) (22.7)
Introducing the one-sided Fourier transforms
|t = n(w), (22.8)
/0 dteti(t) = —ng—iwn(w), (22.9)
et = o+ iwno - atn(w), (22.10)
the initial condition appear as sources in the equation of 1,
0 on 0 on
2 _ _— _— _ =
wn+ P (gH6x> + 3y <gH6y> F(x,y,w), (22.11)
with
0xX oy . .
F(xl Y, (,U) - a + @ + 1w — Mo, (2212)

To ensure causality, a small positive imaginary part has been added to the frequency
w, i.e., wmeans w + ie. It will not be written explicitly but is needed for the inverse
Fourier transforms.

For the discussion of the open boundary problem it is sufficient, to consider sim-
plified examples. Hence, we assume that the meridional wind is zero and the ini-
tial sea level elevation depends on the zonal co-ordinate only. In this case we have
a one-dimensional problem since all variables depend on the zonal co-ordinate x
only.

The sea surface elevation should be small compared with the depth. Hence, for
a flat bottom the depth is approximately constant, H = Hy 4+ n ~ Hj, and all waves
spread with a constant phase speed c

c = +/gHo. (22.13)

A general solution of equation (22.11) can be found by means of a Green func-
tion. The Green function is defined by the equation

<w2 + c2£j2> G(xx',w) = &(x — x). (22.14)
The solution has the general form

G(xx',w) = 0(x—x")g” (xx', w) +6(x' — x)g~(xx, w), (22.15)
and has the important property

¢ (xx,w) —¢S(xx,w) = 0 for x=x,

09~ (xx', w) 0¢<(xx', w
C2<g (ax' ) 0g (ax/ )> — 1 for x—1. (22.16)
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The boundary conditions at the edge of the model area will be specified later.
Subtracting equation (22.14) multiplied with G from equation (22.11) multiplied
with 17 and integrating over x’ the general solution reads

be / / x'=b,
n(xw) = / dx' G(x, %', w)F(x' w) + n(x’)w—(}(xx’,w)an(x)
be ox’ ox’ Y=by
(22.17)

by and b, are the western and the eastern boundary of the channel. Hence, spec-
ifying appropriate boundary conditions for the Green function can eliminate un-
known boundary values 1 or 1, and simplifies the problem considerably. However,
also from a Green function with “wrong” eastern and western boundary conditions
the correct solution can be found.

22.2.1 General solution for a very long channel

As first example we consider an infinitely long channel, i.e., b, = —o0, b, = 400,
which will serve as a reference solution for the open boundary problem. Owing for
solutions which describe surface waves forced in a limited area near the origin we
require, that 17 vanishes at large distances from the origin,

n(x) =0, for x— +oo. (22.18)
The appropriate boundary conditions for the Green function,
G(xx',w) =0, for x — +oo, (22.19)
specify the solution,

1wy
G(xx', w) = welﬂx—x‘. (22.20)

The general result for the sea level 17 the velocity U is

nxw) = /oo dx' G(xx', w)F(x'w), (22.21)
U(xw) = / dx' G(xx', w) cz?;;(,)—i—iw (X+Uy)| - (22.22)

22.2.1.1 Example: initial sea surface elevation

An illustrative example is a so-called “dam breaking problem” where the initial
surface elevation is given and the initial velocity is zero,

n(x,0) = no(x)
U(x,0) = Uy(x)=0. (22.23)

The general solution follows from inverse Fourier transforms

1

n(x,t) = 3 (no(x —ct) +no(x + ct)) (22.24)

c

U(x,t) = > <n0(x —ct) —no(x+ ct)) (22.25)
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These are two waves which have the shape of the initial sea level profile and prop-
agate in opposite direction. Eastward propagation corresponds to the argument
x — ct, westward propagation to x + ct.

22.2.1.2 Example: uniform wind stress

For a uniform wind switched on at ¢t = 0, there is no perturbation in the sea level.
The forced flow is growing with time

n(x,t) = (22.26)

0,
Ux, ) = /0 Lar X (), (22.27)

22.2.2 A channel with an eastern and western closed boundary

At a closed boundary at x = b the velocity vanishes. In this case the natural bound-
ary condition is to prescribe the sea level derivative from the wind forcing. Hence,
from equation (22.17) it follows, that the appropriate boundary condition of the
Green function reads

/
aG((;;',x) = 0, for x' =b,,
/
w((;;,/x) — 0, for ¥ =ba. (22.28)

Waves are reflected at a closed boundary, if channel is closed at both sides, they are
reflected back and forth. The resulting Green function has many additional terms
for the waves reflected at both the boundaries,

inw (rp,—2p
G(xx'w) = Sao e ) x
2iwc

% (ei%|x—x’\ 4 i ¥ (@be=2by—|x—x']) 4 4i%¥ (2be—x—) +e—i%(zbw—x—&h>29)

The general expression for the sea level elevation is similar to that for the case of a
long channel,

n(xw) = /bbe dx' G(xx', w)F(x'w) + G(xby, w)X(by) — G(xb,, w)X(b,). (22.30)

For b, — oo and b, — —oo the long channel case is retained.
An interesting special case is that of a long channel closed at one side only. With
b, — —oo it follows
ei%\xfx’\ _{_ei%(Zbgfxfx’)

/ _
G(xx'w) = T . (22.31)

22.2.2.1 Example: uniform wind stress

If uniform wind switched on at ¢t = 0, the flow cannot pass the boundary at x =
b and the sea level will be disturbed there. This perturbation spreads as a wave
through the channel.
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22.2.3 Splitting the channel into two subbasins

To discuss the open boundary problem we split the channel at x = a2 and ask only
for the sea level within an area of interest, say at x > 4. The point x = a is an open
boundary, nothing special happens there.

The forcing function F can be subdivided formally into two parts,

F(xw) = 0(x —a)F(xw) + 6(a — x)F(xw) (22.32)

F, is the forcing in the area east of x = a, F; describes all forcing west of x = a. The
resulting expression for the components of 7 is

be
n(xw) = / dx' G(xx', w)E (x'w) — G(xbe, w)X(be),

m(xw) = "y G(xx', w)F(x'w) + G(xby, w) X (by). (22.33)
Jby

Considering the Green function, equation (22.29), it turns out, that the calculation
of 17, requires information on the basin at x < 4. In our simple example of a chan-
nel with a flat bottom this is the position of the western boundary b, and the phase
speed of waves at x < a which is given by the depth. Hence, it is reflection of waves
at the western boundary, which links the dynamics in the eastern and western sub-
basin inextricably.

Now we consider the special case that waves generated in the eastern subbasin
never return from the western part. This never happens, if the distance to the west-
ern boundary is far enough, i.e. by, — —oo0.

To understand the mathematical properties of this solution the various contribu-
tions must be analysed in more detail. The following notation will be used: The
subscripts “1“and “r” indicate where a wave is forced, a superscript "p” indicates

a primary wave dlrectly forced by wind or initial surface elevation, a superscript
”s"” denotes a secondary wave reflected at x = b,. Waves with the argument x — ct
propagate eastward indicated by a ”>", westward propagation corresponds to ar-
guments x + ct indicated by ”<*.

The inverse Fourier transforms of n; and 1, are

— flw(tf¥) fiw(t Zb" - ”)
m(xt) 27r Zzwc / dx’e ( te ) ki ((2/213)4)
and

. dia) 1 x / —iw(tfx%xl) / /bﬂ P —iw(t+ x—cx/) ,
n(xt) = 7 Ticoe (/a dx'e F(x'w) + : dx'e F(x'w)

+/ [21wc /ﬂ dx' e—iw(t—@)ﬂ(x/w) — G(xb,, w)X(be, w)(}22.35)

The expression

a a—x *(
ny(at) = 621C7Lr)2iiuc l dx' e ot )Fl(x w), (22.36)
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describes eastward propagating waves at x = a which are generated at x < a. n;
is a superposition of such waves which enter the model domain at x = a4 and the
same waves but reflected at x = b,,

m(xt) = ny(xt)+n;(xt)

n(xt) = <a,t— & - ”> (22.37)

n(xt) = np <be,t+ z - be) =n/ (a, t— Zb_cx_“) (22.38)

In the same manner 7, can be rewritten as a superposition of waves generated at
x > a and their image generated by reflection at the solid wall at x = b,,

ne(xt) = nf(xt) +ni(xt) (22.39)

The primary waves have eastward and westward propagating components,

nr(xt) = b (xt) +nf"(xt),
X : x—x'
mo(xt) = ;ljr)zivc / R G >Fr(x’w), (22.40)
a
be —1 x—x i X—be
S (xt) = ”21% 21.}“ < / gy ¢ () F(¥w) —e @t 2) X (3, @2}41)
X

At x = b, the waves are reflected and the secondary waves are propagating only
westward

B) = m(xt) = nf (be,t+ = "6) (22.42)

Hence, the total sea level elevation 1 = 1n; + 1, at a certain point x is the super-
position of four contributions. The first term of 1/ depends on x — ct and describes
all waves generated at locations between a and x traveling eastward at point x. The
second contribution of nf depends on x + ct and corresponds to westward moving
waves coming from locations east of x. At x = b, all eastward moving waves are
reflected (after an infinitely long time for b, — o0). The corresponding terms 7;-
depend on x + ct only.

Forces west of x = a influence the sea level east of x = a by waves denoted
with ;. The first contribution of 1;, n;”, depends on x — ct and describes eastward
traveling waves generated somewhere at locations x < a. These waves are also re-
flected at x = b,, the corresponding waves are described by 1>, which is a function
of x + ct.

Summarizing, linear waves within a long channel with one open boundary are

fully described, if the Green function and all forces for x > a are known and if, in

addition, a time series of incoming waves n{ (a,t) is prescribed. However, it must

be pointed out again, that this is the case only for b, — —oco, which implies that
westward propagating waves generated somewhere at x > a are never reflected
in the western subbasin. Only under this special assumption, the dynamics of the
western subbasin is not needed for the solution in the eastern subbasin and waves
from the western subbasin appear only as prescribed boundary values at x = a.
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22.2.4 The Sommerfeld radiation condition

The fact, that 1~ depends on x — ¢t and 1= depends on x + ct can be exploited to de-
rive an additional condition, which is suitable to separate both wave components.
From

on~ (xt) on~ (xt)
= — 22.4
ot “Tox (2243)
on=(xt) on=(xt)
= 22.44
ot “Tox (2244)
and the condition, that eastward components of 7, vanish at x = g, it follows that
on, (xt on, (xt
”fa (t ) e = ”g(x ) | x=a, (22.45)
(22.46)

Since 1; contains both, eastward and reflected westward going waves, a similar
condition does not apply.
Hence, requiring such an irradiation condition for the total solution n

an(xt)’ o Can(xt)‘ -
at X=a ax X=ar

is equivalent with n;(a) = 0. This means, that a boundary condition like equation
(22.47) excludes eastward propagating waves entering the subbasin at x = a. This
kind of boundary condition was originally derived for the theory of electromag-
netic waves to remove incoming waves from the far field solution for an oscillat-
ing dipole antenna and is called commonly Sommerfeld radiation condition (see

[ D

(22.47)

22.2.5 A general approach with open boundaries

For a more general approach to the open boundary problem we return to equation
(22.17) and use x = a as the lower boundary,

/ /
nxw) = n(xw)—c? n(x')M — G(xx, w) on(x) (22.48)
ox’ ox’ Y—a
Because of x > a, we find for the Green function
0G(xx', w iw
(ax/ ey = ~26 (!, @)= (22.49)

This is an important result. It is compatible with b, — —oo, but not equivalent. It
defines the Green function for x > a but leaves it undefined for x < a. From the
Sommerfeld radiation condition (22.43) and (22.44) it follows (in Fourier space)

Can(x, w)
ox

The final result for n is

lvma = iw(n”(a,w) —n~(a,w)). (22.50)

n(xw) = n(xw)+ 2iweG(xa, w)n” (aw). (22.51)
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Notably, now the only unknown boundary value which must be prescribed is 1~ (aw),
i.e., the incident waves at x = a. Alternatively, the gradient of n~ (aw) could be pre-
scribed. Returning to our original problem to separate the dynamics of the eastern
and western part of a channel with two closed boundaries, equation (22.51) reveals
as a possible solution. Especially the wave components which are generated in
the eastern subbasin and reflected at a possibly existing western boundary of the
western subbasin are now part of n”. If n~ is prescribed, the solution is complete.
How the information on 1~ could be gained for a numerical application, remains
an open question.

The outcome of this section is, that the solution for the sea level at the right side
of the open boundary has two contributions, one, namely 7, is fully defined from
the dynamics in the eastern subarea, the second one needs additional boundary
data n~ (aw), which must be specified otherwise. The knowledge of a time series of
n~ (at) at the boundary is sufficient, it is not necessary, to know data from x < a. Itis
important to note, that specifying “nothing” implies n~ (at) = 0, which means, that
no waves are generated at the left hand side of the boundary. Hence, the complete
solution will never be given solely by the dynamics in the domain of interest, every
solution, whatever is done with n~ (at) implies some assumption, what happens
outside the open boundary.

22.2.5.1 Is this an ill-posed problem?

In the previous analysis all quantities are well defined and a unique solution can
be found. But this requires to separate the solution components 7, and 1; which
is more or less impossible for realistic applications and numerical solution proce-
dures. For practical applications the problem reveals differently: (i) find a solution
of the wave equations for given initial state and forcing within the model domain,
(ii) represent incoming waves by prescribed boundary values for 7. As long as the
n~ (a) is known, the solution is well defined. However, if ~ (a) is diagnosed from
a prescribed value for the total sea level, n(a) = n°*! by

n(a) = n™—n(a), (22.52)
the solution reads
nxw) = n(xw)+ 2iweG(xa, w) (N (w) — n,(aw)) . (22.53)

All deviations of the internally forced sea level from prescribed values generate
waves which propagate into the model domain and will reappear at the bound-
ary after some time. Hence, boundary values and forcing must be consistent data
sets to avoid artificial waves. This is an unrealistic constraint for oceanographic
applications where boundary data are taken in most cases from other models or
measurements. Surface gravity waves are varying at time scales from seconds to
minutes but boundary values are mostly available with time scales of hours, days
or even month. An open boundary with prescribed slowly varying external values
would simply reflect outgoing waves back into the model area. From this point of
view the problem is really ill-posed and can be solved only approximately.
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22.2.5.2 Example: initial sea surface elevation with open boundary

Let us reconsider the “dam breaking problem” now with an openboundary atx = a
and with b, — oo,

n(x,0) = mo(x)
U(x,0) = Uy(x)=0. (22.54)

The solution reads
n(x,t) = 0(x— a)% <Q(x —a—ct)no(x —ct) +no(x+ ct)> (22.55)

As found also for a long channel, these are two waves with the shape of the initial
sea level profile, one moving leftward and one to the right. Comparing with the
full solution equation (22.23), the eastward going wave in 7, becomes truncated, if
sufficient time t has elapsed that waves coming from the area left of a4 could reach
the point x, i.e., for ct > x — a. There is no information on such waves in 7,, but the
missing term is in 1;,

m(xt) = 0(x—a)m (ﬂ,t 2 : a> , (22.56)
where the time series 1;(at) is simply
1
m(at) = 06(ct) 5 no(a — ct). (22.57)
Hence, n; is
1
m(xt) = O(ct—x-+a) 5 no(x — ct), (22.58)
so that the truncated wave track in 7, at times ¢t > x — a is completed by 7;. This

underlines again, that the full solution in the model domain needs information on
incoming waves.

22.2.6 An open boundary conditions for waves

22.2.6.1 Prescribed incoming waves

An expression for the sea level time tendency at the open boundary can be derived
from the Sommerfeld radiation condition equations (22.43) and (22.44),

on(at) on=(at)  0n~(at)

5 = ot e (22.59)
_On~(at) On~(at)
= 5t (22.60)
_on(at)  on~(at)  On~(at)
= c i c I + 3 (22.61)
>
_ Onlat) 0" (at) (22.62)

ox ot
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Using the velocity equation for vanishing wind, the sea level gradient can be elim-
inated,

on(at) 10U = _0n~(at)

ot a c ot ot (22.63)

For numerical reasons, also the time integrated boundary condition is of interest,
1 >
n(at) = —EU +2n7 (at). (22.64)

This scheme is useful for models with no incoming waves, i.e. n~(at) = 0, or
known incoming waves, e.g, for tidal waves entering the basin of a marginal sea.

22.2.6.2 Theill posed initial condition of Nycander and D66s

[ ] discuss an example where only the boundary point
has an initial elevation. They demonstrate that an open boundary condition based
on the Sommerfeld radiation condition like equation (22.47) generates a step like
wave front running into the model basin, but the integrated boundary condition
(22.64) does not. This is an important result and not commonly known. However,
from this finding they disqualify a Sommerfeld radiation condition as inappropri-
ate for numerical applications since the results would depend strongly on initial
conditions at the open boundary. In the light of the previous section this result
must be reconsidered. It is clear, that a boundary condition like equation (22.64)
with 1~ (at) = 0 gives a different result than a boundary condition (22.62) with
w = 0. The first one cancels all incoming waves and treats the aforementioned
initial condition as a small perturbation, but the latter boundary condition leaves
the initial value at the boundary unchanged, until a time derivative of an incoming
wave is prescribed and treats the initial condition as the onset of an incoming wave
track. Hence, both results are correct and demonstrate, the skills of the correspond-
ing boundary conditions. Below, it will be shown, that the Sommerfeld condition
is also able, to treat an initial peak at the boundary as a minor perturbation, if ap-
propriate boundary values are prescribed.

22.2.6.3 Prescribed sea level time series

In practical numerical applications boundary values are often known only at a
coarse time scale. A relaxation scheme

on(at) _ on(at) +rf’“—n(af)

ot ox T

, (22.65)

may be the appropriate boundary condition. However, this is definitely a compro-
mise, the relaxation time T must be at the same order of magnitude or larger than
the time scale of the prescribed data n°*.

If n°** is given at a short time scale comparable with that of typical processes in
the eastern subbasin, it needs to be compatible with n<(at). Otherwise outgoing
waves are reflected since the difference 71°*! — 17(at) acts like an incident wave.
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This shortcoming can be improved, if strong incident waves are separated from
prescribed values. For tidal signals this may be possible. The result is a combined
procedure

on(at)  on(at) _on~(at) 1" —n(at)
or  “Toax 2 T T ’

where T can be chosen as very large.

(22.66)

22.2.7 A numerical example

Let us consider now a basin closed at the east and open to the west. For spatial
derivatives centered differences at a one dimensional Arakawa B-grid are used, the
time step is leapfrog,

U?H _ 77?_1 _ 2C§1 (ur —ur,) (22.67)

W o= Ut - 2de (- ) (22:68)
Ax

= = 22.69

cg N (22.69)

The boundary condition for the closed boundary at x = b is implemented as a
condition for the velocity,

urtt = o, (22.70)

where 7j, is the grid index of the boundary point.

At the open western boundary the numerical scheme for the sea level is not
complete and requires an addional equation. Several schemes are tested, especially
the ability to add prescribed external data to the numerical scheme will be investi-
gated.

The results are compared with control experiments. These are performed with
the same model setup but with the model domain extended much more westward.

22.2.7.1 The control experiment

The control experiment is performed with a model of a large basin, the grid spacing
is Ax = 1000 m, the time step is 10 s. The depth of 100 m corresponds to a phase
speed of ~ 31.3ms~!. Waves are excited from an initial step like perturbation of
the sea surface set near the eastern boundary. As derived analytically, two waves
are generated, one moving eastward and one moving westward. The eastward
propagating wave is reflected at the eastern boundary and the whole initial surface
pattern moves westward. It returns after reflection at the western boundary and so
on.

Figure 22.1 shows the average surface height in the subarea of interest for the
experiments with the open boundary. The initial height of the step like perturbation
is 1 m. The subarea covers exactly twice the area of the initial perturbation, hence
the initial value of the average surface height is 0.5 m. When the westward moving
surface pattern leaves this area it becomes zero but returns to its initial value, if
the waves reflected at the western boundary return. After reflection at the eastern
boundary the waves leave again the domain of interest.
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Figure 22.1: Time series of the average sea surface height in the model basin (upper

pannel), Time series of sea surface height at the position of the open boundary
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At the point where the open boundary is placed in the later experiments, a time
series of boundary values has been stored for experiments with prescribed values
of n at the open boundary. The lower pannel in Figure 22.1 shows the boundary
values. The oscillations near the wave fronts stem from the numerical scheme.

22.2.7.2 Basin with western open boundary, no incoming waves

The experiments with the open boundary are carried out with the same grid spac-
ing, depth and time step as the control experiment on a subgrid of 100 points. The
open boundary is at the western side of the subbasin. Both versions of the open
boundary condition equation (22.62) as well as equation (22.64) have been tested.

Unfortunately, the numerical scheme for the Sommerfeld radiation condition
appears to be unstable and requires weak filtering. An Asselin filter

i =r () + (-2 (22.71)

has been used with r = 0.05.

Figure 22.2 shows a sequence of snapshots of the sea surface height of the con-
trol run. The results for both open boundary conditions coincide with the control
run and are not shown. The differences between the runs with open boundaries
and the control run can be seen from Figure 22.3, which shows the difference of the
total energy of the runs with open boundary and control run. The run with the in-
tegrated boundary condition according equation (22.64) shows smaller deviations
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from the control experiment than that with boundary condition in differential form,
(22.62). It is important, that both results converge for large time, wave components
which have been reflected at the boundary leave the model area, if they reach the
open boundary again. For many practical purposes the accuracy of both boundary
condition would be sufficient.

22.2.7.3 A modified experiment of Nycander and D66s

.04
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Figure 22.4:
To reconsider the experiment of [ ], the initial sea level

is set to zero everywhere except at the open boundary,

n(0) = I, (22.72)
U(a,0) = c% (22.73)

We specify the incoming wave front after the inital condition as decreasing linearly
with time,

n”(at) = % <1 — ntAt> O(nAt —t). (22.74)

It is switched off after n numerical time steps when the sea level elevation at x = a
becomes zero. The special case n = 0 corresponds to the original experiment of
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Nycander and Do66s. For the Sommerfeld radiation condition the time derivative
must be specified, which is,

= —O(nAt—t) 2 —_ (22.75)

It is switched off when the time integral of a";gat) cancels exactly the initial sea level

elevation at x = a. The limiting case n = 0 is not suitable for numerical implemen-
tation, the approximation a”;g“t) = 0 used by Nycander and D66s corresponds to
the different case of constant inflow.

Figure 22.4 shows a time series of the average sea level within the model basin
for n = 11. As shown in the box in Figure 22.4 the sea level is growing during the
first 11 time steps due to the initial inflow. Then the velocity U(a, t) becomes zero
and the average sea level is constant until the initial wave emitted from the open
boundary has been reflected at the closed eastern boundary and leaves the model
area through the open boundary.

For the time integrated boundary condition (22.64) this happens with high accu-
racy. Differently from the results of Nycander and D66s the Sommerfeld radiation
condition gives similar results. However, here the Asselin filter used to suppress
the numerical instability reveals as a source of inaccuracy. After n time steps, when
the amplitude of the incoming waves becomes zero, there remains a small residual
inflow at x = a4, which leads to a wrong volume budget of the model. With a weak
filter the error becomes small, however, for the cost of growing artificial numerical
oscillations.

Hence, for linear, nonrotating free waves the time integrated boundary condi-
tion (22.64) gives more accurate results than the Sommerfeld condition (22.62). It is
numerically stable and appears more robust against numerical errors. Modifying n
the general finding is similar, hence, this case is not discussed here.

22.2.7.4 Basin with western open boundary, incoming waves
As the next example an incoming periodic wave is considered,

n~(at) = sin(wt) (22.76)
with w = 10725~ L. For the Sommerfeld condition (22.62) the derivative

on~ (at)
ot

= wcos (wt) (22.77)

is needed. The numerical results with both versions of the boundary condition
differ only slightly from the analytical solution given by equation (22.38). Figure
22.5 shows the average volume in the basin, calculated numerically with the time
integrated open boundary condition,

_J dxn(xt) '

T s (22.78)

V()

Since the incoming wave starts with a sea level rise, it oscillates around a positive
average value. If the reflected wave has left the model area, the solution becomes
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independent of the initial condition and the average volume oscillates around 0.
After the reflected wave has left the model area at t ~ 6400 s, analytical and nu-
merical results differ considerably in the amplitude. However, these differences
can be traced back to the general errors of the numerical scheme. For the average
volume most parts of the periodic signal in the model area cancel out by integra-
tion, and the residual contribution depends strongly on the phase speed. Reduction
of the phase speed in the analytical formula by only 0.5% reduces the relative er-
ror of the numerical results well below 10%. The average volume with boundary
condition (22.62) cannot be distinguished from that with (22.64) and is not shown.
Since the incoming wave is periodic, the time integral of V,

/0 t ar'v(t), (22.79)

must oscillate around an asymptotic value. Notably, the asymptotic value is estab-
lished only by the internal model dynamics. Figure 22.6 shows the relative error
for the numerical solutions with both versions of the open boundary conditions
and with the analytical solution as reference. The result with the time integrated
boundary condition (22.64) shows minor oscillations around zero. The results with
the Sommerfeld condition (22.62) show a linear drift. This corresponds to a small
constant error of the velocity at the boundar, which becomes apparent in the time
integral of the average sea level as a linear trend. It is a result of the numerical er-
rors from filtering, which is needed to keep the solution stable. With a weeker filter
the drift vanishes, but the solution shows a growing computational mode.

22.2.7.5 Basin with western open boundary, combined initial perturbation and
incoming waves

So far both boundary conditions, the Sommerfeld condition (22.62) as well as the
time integrated boundary condition (22.64) are able to pass incoming waves into
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the model area and let them out after reflection at the eastern model boundary. For
practical applications it is usual, to have a superposition of both, waves generated
withing the model area and waves entering the model domain from outside. Since
the basic equations are linear, the results from a combined experiment with an ini-
tial step like perturbation in the sea level and an incoming wave must be a linear
combination of the results from the experiments described in sections 22.2.7.2 and
22.2.7.4. This has been tested for both types of boundary conditions and found to
be valid with an accuracy of 107°.

22.2.7.6 Basin with western open boundary, prescribed sea level values

If the sea level at the boundary would be exactly known, there is no need for an
open boundary condition. The numerical scheme would be already complete. In
practical applications, however, it appears that the sea level at the boundary is
known only approximately. This implies that the sea level at the boundary may be
not consistent with the model dynamics. In this case, a prescribed sea level would
lead to strong reflections of outgoing waves at the boundary. Incoming waves
would be generated with an amplitude depending on the difference between the
prescribed and the calculated sea level at the boundary.

As a compromize, prescribed boundary values can be coupled in smoothly by
a relaxation procedure. The problem is, how fast relaxation must be applied for
a sufficient coupling of the prescribed boundary data to the model dynamics, and
how fast relaxation can be applied without disturbing the outgoing waves.

If one tries to generate incoming waves, e.g. a periodic signal by relaxation,
the prescribed values would not contain the information on the waves returning
from the model interior. Hence, if the period of the incoming waves is smaller
than a typical return time of the reflected wave this implies a complete mismatch
at the boundary and strong reflection of outgoing waves. Reducing the strength
of relaxation results in smaller amplitudes of incoming waves, stronger relaxation
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would result in more reflections and wrong asymptotic behaviour. If the period
of the incoming waves is much longer than the return time of the reflected signal,
the model has time to adjust to the prescribed data by waves running through the
model area and leaving through the open boundary with only minor reflection.

Hence, relaxation can be used to add information on slowly varying processes
influencing the model domain. It is important to note, that in this case the prescibed
sea level is the total sea level, not the incoming wave component.

22.3 Two dimensional Sommerfeld radiation condition for
sea level

Assuming barotropic, linear surface waves and neglecting Coriolis force, the sea
level elevation 1 has the general form

n=n(k-7— wt)). (22.80)

1 depends on the argument o = k - 7 — wt where k is the wave number and w is the
wave frequency. The two dimensional phase velocity has the direction of the wave
number vector,

wk
c = —-—. 22.81
C e (22.81)
The time derivative of i has the form
on on on
- = e e 2 22.82
ot “ox Cydy (2282)
with
an d
Cy = ckx = ol o c cky = 7 oy
x — o = T Ty o — -7 = = ’
k m2 | a2 Y k m2 | an?
T u
2
w
C2 = CJZC +C§ — kiz (2283)

Incoming and outgoing waves passing a boundary can be distinguished by projec-
tion on the vector 7i normal to the boundary,
c-n < 0, incoming waves,
c-n > 0, outgoing waves, (22.84)
where 7 is directed outward of the model domain.

The two dimensional radiation condition can be expressed in a one dimensional
form. The identities

o _ Gon_ _on
ot on 9x Tox’
ox
on _ Gon_  an
a ~ wmay Moy (22:5)
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can be used as a radiation condition where the quantities a, and a, are related to ¢y
and ¢, by

a, = —, ay = —. (22.86)

ay is positive for eastward moving waves and negative for westward moving waves,

on~ on~
S
on=< on=

If the wave moves exactly zonally, ay is undetermined. Similarly, for northward
moving waves 4, is positive, and a, is undetermined. Hence, for waves moving
approximately perpendicularly to open boundaries, an estimate for the total deriva-
tive %t can be found from the cross boundary gradient and one phase speed only.
For an eastern boundary it reads

0 0 0
n o _ on”  on*

a ot aat ;
— >\i+% a
= 171 0 e O O
L +<Izil+1>"a”t. (22.89)
or alternatively
Lo () o

Hence, an assumption on the incident angle of the waves has to be made. If the
phase speed is diagnosed from the wave field, a, or a, may become very large for
waves moving in the boundaries direction. This may cause stability problems in
the numerical scheme.

Finally, fresh water flux can be added to the time tendency by waves,

on on on

- el yay+qw (22.90)

22.4 The rotating and stratified case

The Sommerfeld radiation condition applies only if all wave components with 