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U.S. EPA, 2006

Nonattainment Areas (2001-2003 data)

4th highest daily max 
8-hr mean O3 > 84 ppbv

The U.S. ozone smog problem is spatially widespread, 
affecting >100 million people



Radiative forcing of climate (1750 to present):
Important contributions from methane and ozone

IPCC, 2007
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Change in 10-model mean 
surface O3

Attributed mainly to increases 
in methane and NOx
[Prather et al., 2003]

IPCC [2001] scenarios project future growth

2100 SRES A2 - 2000

Projections of future CH4 emissions 
(Tg CH4) to 2100



Rising background O3 has implications 
for attaining air quality standards
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O3 (ppbv)

U.S. 8-hr 
average

Recent observational analyses suggest that 
surface O3 background is rising

[e.g. Lin et al., 2000; Jaffe et al., 2003, 2005; 
Vingarzan, 2004; EMEP/CCC-Report 1/2005 ]
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Future 
background?
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CH4 links air quality 
& climate via 

background O3

Fiore et al., GRL, 2002

Double dividend of Methane Controls:
Decreased greenhouse warming and improved air quality

GEOS-Chem Model (4°x5°)



Impacts of O3 precursor reductions on 
U.S. summer afternoon surface O3 frequency distributions

Fiore et al., 2002; West & Fiore, ES&T, 2005

GEOS-Chem Model Simulations (4°x5°)

Results add linearly when both methane and NOx are reduced

CH4 controls
affect the entire
O3 distribution
similarly
(background)

NOx controls
strongly decrease
the highest O3
(regional pollution
episodes)



MOZART-2 Global Chemical 
Transport Model [Horow itz et al., 2003]

 Fully represent methane-OH relationship
 Test directly with observations

3D model structure

NCEP, 1.9°x1.9°, 28 vertical levels

Research Tool:

Methane trends and linkages with 
chemistry, climate, and ozone pollution

1) Climate and air quality benefits from CH4 controls
 Characterize the ozone response to CH4 control
 Incorporate methane controls into a future emission scenario

2) Recent methane trends (1990 to 2004)
 Are emission inventories consistent with observed CH4 trends?
 Role of changing sources vs. sinks?



More than half of global methane emissions 
are influenced by human activities

~300 Tg CH4 yr-1 Anthropogenic [EDGAR 3.2 Fast-Track 2000; Olivier et al., 2005]
~200 Tg CH4 yr-1 Biogenic sources [Wang et al., 2004]  

>25% uncertainty in total emissions
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Clathrates?
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Characterizing the methane-ozone relationship 
with idealized model simulations

Model approaches a new steady-state after 30 years of simulation
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Is the O3 response sensitive to the location of CH4 emission controls?

Simulation Year

Reduce global anthropogenic CH4 emissions by 30%
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Change in July surface O3 from 30% decrease in 
anthropogenic CH4 emissions 

Globally uniform emission reduction Emission reduction in Asia

 Target cheapest controls worldwide

Percentage 
Difference: 

∆Asia – ∆uniform
∆Asia

Enhanced effect in 
source region

<10% other NH source regions
< 5% rest of NH
<1% most of SH

A.M. Fiore



Decrease in summertime U.S. surface ozone  
from 30% reductions in anthrop. CH4 emissions

MAXIMUM DIFFERENCE 
(Composite max daily afternoon mean ozone JJA) 

NO ASIAN ANTH. CH4

 Largest decreases in NOx-saturated regions

A.M. Fiore



Tropospheric O3 responds approximately linearly to 
anthropogenic CH4 emission changes across models

X

MOZART-2 [West et al., PNAS 2006; this work]
TM3 [Dentener et al., ACP, 2005]
GISS [Shindell et al., GRL, 2005]
GEOS-CHEM [Fiore et al., GRL, 2002]
IPCC TAR [Prather et al., 2001]

Anthropogenic CH4 contributes ~50 Tg (~15%) to tropospheric O3 burden
~5 ppbv to global surface O3 A.M. Fiore



Multi-model study shows similar surface ozone decreases 
over NH continents when global methane is reduced

ANNUAL MEAN OZONE DECREASE FROM 20% 
DECREASE IN GLOBAL METHANE

Full range of 
12 individual 
models

 >1 ppbv O3 decrease over all NH receptor regions
 Consistent with prior studies
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How much methane can be reduced?

Comparison: Clean Air Interstate Rule (proposed NOx control) 
reduces 0.86 ppb over the eastern US, at $0.88 billion yr-1

West & Fiore, ES&T, 2005

IEA [2003] for 5 industrial sectors
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Will methane emissions increase in the future? 

PHOTOCOMP for IPCC AR-4 used CLE, MFR, A2 scenarios for all O3 precursors
[Dentener et al., 2006ab; Stevenson et al., 2006; van Noije et al., 2006; Shindell et al., 2006] 

Anthropogenic CH4 emissions (Tg yr-1)

Current
Legislation
(CLE)
Scenario

Our approach: use CLE as a baseline scenario & apply methane controls

Dentener et al., ACP, 2005 A2

B2

MFR



Emission Trajectories in Future Scenarios  (2005 to 2030)

Anthropogenic CH4
Emissions (Tg yr-1)

Control scenarios reduce 2030 CH4 emissions relative to CLE by:
A) -75 Tg   (18%) – cost-effective now
B) -125 Tg (29%) – possible with current technologies
C) -180 Tg (42%) – requires new technologies

Additional 2030 simulation where CH4 = 700 ppbv (“zero-out anthrop. CH4”)

A

B

C

CLE Baseline

Surface NOx Emissions 
2030:2005 ratio

0.3          0.8          1.4           1.9          2.5

A.M. Fiore



CLE A B C

OZONE
METHANE

+0.16 Net Forcing

+0.08
0.00 -0.08

Reducing tropospheric ozone via methane controls decreases 
radiative forcing  (2030-2005)

-0.58

CH4=700 ppb

(W
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)

Methane Control Scenario

 More aggressive CH4 control scenarios offset baseline CLE forcing
A.M. Fiore



Future air quality improvements from CH4 emission controls

Percentage of model grid-cell days where surface ozone > 70 ppbv       
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2030 European high-O3 events under CLE emissions scenario
show stronger sensitivity to CH4 than in USA

Cost-effective 
controls prevent 
increased 
occurrence of 
O3 > 70 ppbv in 2030 
relative to 2005 

Controls on global CH4
reduce incidence
of O3 > 70 ppbv
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Summary: Connecting climate and air quality via O3 & CH4

CLIMATE AND AIR QUALITY BENEFITS FROM CH4 CONTROL

• Independent of reduction location (but depends on NOx)
Target cheapest controls worldwide
• Robust response over NH continents across models
~1 ppbv surface O3 for a 20% decrease in anthrop. CH4

• Complementary to NOx, NMVOC controls

• Decreases hemispheric background O3
 Opportunity for international air quality management
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How well do we understand recent trends in atmospheric methane?

How will future changes in emissions interact with a changing climate?

A.M. Fiore



Observed trend in surface CH4 (ppb) 1990-2004

Data from 42 GMD stations with 8-yr minimum 
record is area-weighted, after averaging in bands 

60-90N, 30-60N, 0-30N, 0-30S, 30-90S
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NOAA GMD Network

Global Mean CH4 (ppb)
Hypotheses for leveling off
discussed in the literature:

1. Approach to steady-state

2. Source Changes   
Anthropogenic
Wetlands/plants
(Biomass burning)

3. (Transport)

4. Sink (CH4+OH)
Humidity
Temperature
OH precursor emissions
overhead O3 columns

Can the model capture the observed trend (and be used for attribution)?
A.M. Fiore
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Estimates for changing methane sources in the 1990s
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ANTH+BIO simulation with time-
varying EDGAR 3.2 + wetland 
emissions improves:
 Global mean surface conc.
 Interhemispheric gradient 
 Correlation at high N latitudes
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How does meteorology influence methane abundances? 

]CH][OH[
]CH[

4

4

k
τ =

Temperature
(88% of CH4 loss 
is below 500 hPa )

Humidity
Photolysis
Lightning NOx

Why does BASE run with constant emissions level off post-1998?

 Examine sink

What drives the change in 
methane lifetime in the model?

CH4 Lifetime (τ) against Tropospheric OH

∆τ = 0.17 yr = 1.6%)

∆τ
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Small increases in temperature and OH  
shorten the methane lifetime against tropospheric OH 
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An increase in lightning NOx drives the 
OH increase in the model

But lightning NOx is highly parameterized 
…how robust is this result? 
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Additional evidence for a global lightning NOx increase?
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Estimate lightning NOx changes using options available in the 
GFDL Atmospheric General Circulation Model:
• Convection schemes (RAS vs. Donner-deep)  
• Meteorology (free-running vs. nudged to NCEP reanalysis)

c/o L.W. Horowitz

More physically-based lightning 
NOx scheme [Petersen et al., 2005]

Evidence from observations?

LIS/OTD
Flash counts

Magnetic field variations 
in the lower ELF range
[e.g. Williams, 1992;
Füllekrug and Fraser-
Smith, 1997; Price, 2000] Negev Desert 

Station, Israel 

Lightning NOx increase robust; 
magnitude depends on meteorology

     

 

free-running GCM

DonnerMOZART RAS
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Summary: Connecting climate and air quality via O3 & CH4

CLIMATE AND AIR QUALITY BENEFITS FROM CH4 CONTROL

• Independent of reduction location (but depends on NOx)
Target cheapest controls worldwide
• Robust response over NH continents across models
~1 ppbv surface O3 for a 20% decrease in anthrop. CH4

• Complementary to NOx, NMVOC controls

• Decreases hemispheric background O3
 Opportunity for international air quality management

METHANE TRENDS FROM 1990 TO 2004

• Simulation with time-varying emissions and meteorology
best captures observed CH4 distribution

• Model trend driven by increasing T, OH

• Trends in global lightning activity?

 Potential for climate feedbacks (on sources and sinks)
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