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Isoprene Emissions are generally thought to contribute
to O; production over the eastern United States
[e.g.Traineret al, 1987; NRC1991]
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O5; formation in eastern U.S. is typically
more responsive to controls on anthrop.
NO, emissions than anthrop. VOCs

Vegetation changes - Impact on O,?
-- Climate
-- Land-use



Future scenario for conversion of agricultural lands to

poplar plantations for biofuels
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WILDLIFE MANAGEMENT SCENARIO

Figure §. Poplar plantings on cropland From Ugarte et al. (2003)
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Poplars are high-isoprene emitting trees

- land-use decisions have implications for air quality

from D. Purves



Isoprene Emission Inventories
uncertain by at least a factor of 2

Isoprene emissions — July 1996

GEIA: Global Isoprene BEIS2: Regional Isoprene
Emission Inventory Emission Inventory

[from Paul Palmer]
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... and there is new evidence for decadal changes



Purves et al. [2004]: observation-based biogenic VOC (BVOC)
emission estimates for mid-1980s and mid-1990s

Minimal complexity approach

Empirical rather than mechanistic / physiological

Based on USDA Forest Inventory Analysis data

Emission estimates for isoprene and monoterpenes

FlAdata: ground surveys and aerial
photography
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Functions from Guentheretal (1993):
f(T,PAR,LAI)

Species-specific parameters from field
measurements via Hewitt / Stewart database
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Purves et al. [2004]: observation-based BVOC
emission estimates for mid-1980s and mid-1990s

280,000 Re-surveyed plots,
2.7 million trees in FIA in eastern U.S.
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‘Natural' changes vs Logging

—~>Estimate recent changes in isoprene and monoterpene emissions

—>Purves Base isoprene inventory similar to BEIS2

from D. Purves



Recent Changes in Biogenic VOC Emissions

[Purves et al., Global Change Biology, 2004]
- Substantial isoprene increases in southeastern USA
largely driven by human land-use decisions

—> Land-use changes not presentlyconsideredin CTMs

Monoterpenes
-
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Invasion of _ _
Pine plantations  Percent Change mid-1980s to mid-1990s

Trends in anthropogenic precursors?



Trends in Anthropogenic Emissions: 1985 to 1995

from US EPA national emissions inventory database
(http://lwww.epa.gov/air/data/neidb.html)
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Percent Change

—Large decreases in CO and VOC Emissions | Net effect

—>Some local increases in NO, On 0,?
—->Higher biogenic VOCs



Approach: Insights from two chemical transport models
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B ) GEos-CHEM
1. Quantify O; response to
reported biogenic and
anthropogenic emissions

changes

2. Determine sensitivity to
uncertainties in isoprene
emissions

July mean isoprene emissions

m GEIA .| Purves
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1. Test whether results are
model-dependent

2. Determine sensitivity to
uncertainties in isoprene-
NO,-O, chemistry

—Isoprene + NO, may lock

up NO, (as isoprene nitrates),
suppressing O formation

—Assumed in GEOS-CHEM
but not in MOZART-2



Tool #1: GEOS-CHEM tropospheric chemistry model [ Bey et a/, 2001]

Uses assimilated meteorology: GEOS-3 1°x1° fields for 2001 | !i‘ ‘_
48 vertical levels ( 9 below 2 km) Ml 4

Regridded to 4°x5° for global spinup and boundary conditions for nested
1°x1° over North America [Wang et al., 2004; L/ et al., 2004]

31 tracers; NO,-CO-hydrocarbon-0O, chemistry coupled to aerosols
GEIA isoprene emission algorithms [ Guenther et al., 1995]
v. 5-07-08 (http://www-as.harvard.edu/chemistry/trop/geos/index.html)

July 2001 1-5 p.m. Surface O; (ppbv)
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GEOS-CHEM Evaluation: July 2001 1-5 p.m. Surface O; (ppbv)
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Increases in isoprene emissions reduce surface O; in Southeastern US

GEOS-CHEM July 1-5 p.m. O;
GEOS 1x1 2001 ChangeinJuly 1-5 p.m.
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Complicated Chemistry...
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Complications to Chemistry: Isoprene may also decrease surface O;
in low-NO,, high isoprene settings

O ) =+
(very fast)
W— "4 Isoprene nitrates
ISOPRENE Sink for NO,?
O;
(slower ) 031 Low-NO,, high-isoprene

Thoughtto occur in pre-industrial [Mickley et al., 2001];
and present-day tropical regions [von Kuhimann et al., 2004]

Isoprene does react directly with O, in our SE US GEIA simulation:
O,+biogenics (10d) comparable to O;,+HO, (16d), O;+hv -> OH (11d)




Increasing Isoprene Decreases O; in Low-NO,, High-isoprene regions

GEOS-CHEM base-case
July 1-5 p.m. mean

Ozone NO,-
saturated

High-NO

: NO,- sensitive

“isoprene-saturated”??

VOC

Other model studies indicate SEUS is
near “maximumVOC capacity point”,
beyond which VOCs suppress O,
formation [Kang et al., 2003].




July isoprene emissions

Choice of isoprene inventory critical for predicting base-case O;

Purves et al., [2004] (based on

FIA data; similar to BEIS-2)
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Identify O; chemistry regime with precursor emissions reductions

Change in July O; (ppbv; 1-5 p.m.)
Isoprene reduced 25% NO, reduced 25%

July Anthropogenic
NO, Emissions
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Choice of isoprene

inventory also critical

for predicting O,

response to changes

High-NO,: —% Low-NO, o W in isoprene and

0, 135-, isopl high isop: strongly anthropogenic NO,
03138 ISop !  NO,-sensitive emissions




With Purves et al.

With GEIA

Change in Mean July Surface O; (ppbv; 1-5 p.m.)
reflecting 1980s to 1990s emissions changes

With BVOC Changes With Anthrop. Changes With Anthrop.+ BVOC Changes
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Changes in Anthropogenic NO, emissions dominate O, response
Butresponse depends upon choice of isoprene emission inventory

Comparison with observed changes? Impact on high-O; events?



Model vs. Obs.: Change in July O; 1980s to 1990s (ppbv; 1-5 p.m.)

Obs:EPA AIRS GEOS-CHEM:GEIA GEOS-CHEM: Purves
GEOS-CHEM 1x1 PURVES

T AIRS DATA

GEOS-CHEM 1x1 GEIA

(1993-1997) — (1983-1987)
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by regional emission changes alone... S -2049-10
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Impact of Sensitivity Simulations on High-O, Events:

= decrease with isoprene
exceptfor GEIA SE

= decrease with NO,,
larger response with GEIA

= dominated by anthrop.
(NO,) emissions but
BVOC changes may offset
for most extreme events
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Unclear whether recent
BVOC emission changes
mitigated /exacerbated
high-O; events




Tool #2: MOZART-2 tropospheric chemistry model [ Horowitz et al., 2003]
» assimilated meteorology: NCEP T62 (~1.9°) 2001 ; 28 vertical levels
« GEIA isoprene inventory [ Guenther et al, 1995]

Does MOZART-2 also predict decreases in O; resulting
fromincreases in isoprene emissions?

Isoprene emission changes from MOZART-2: Change in July
1-5 p.m. surface O;(ppbv)
\, [RRE .

mid-80s to mid-90s [Purves et al., 2004]
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Isoprene nitrates are not a NO, sink in MOZART-2: O; Sensitivity?



What is the O; sensitivity to the uncertain fate of
organic isoprene nitrates?

High-NO,
(very fast) RO, NE) . NO, T—> 03 I
a Isoprene nitrates
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Revisit O; response to isoprene changes with this assumption



Chemical uncertainty: MOZART-2 shows similar results to GEOS-CHEM
if isoprene nitrates are a NO, sink

Change in July 1-5 p.m. surface O;(ppbv)
(due to isop emis changes from mid-1980s to mid-1990s)

With 12% yield of isoprene nitrates
GEOS-CHEM: GEIA GEOS-CHEM:Purves MOZART-2: GEIA

WP | v ] ==

||- Understanding fate of isop. nitrates essential for
predicting sign of response to changes in
isoprene emissions



Conclusions and Remaining Challenges

Better constrained isoprene emissions are needed to quantify:

1. isoprene contributionto E. U.S. surface O;

2. how O;responds to both anthrop. and biogenic emission changes
(deserves consideration in planning biofuel plantations)

—> Utility of satellite CH,O columns?
- New inventories (MEGAN, BEIS-3) more accurate?
—> Aircraft observations from recent ICARTT campaign?

Recent isoprene increases may have reduced surface O; in the SE

— Does this regime actually exist?
— Fate of organic nitrates produced during isoprene oxidation?
-~ Results consistent in MOZART-2 and GEOS-CHEM

Reported regional emission changes from 1980s to 1990s alone do not

explain observed O; trends

— Are anthropogenic emissions inventories sufficient to support
trend studies? (Parrish et al., JGR 2002)

— Decadal shifts in meteorology?

— Changing global O; background?
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