Skip to content

GFDL Research Highlights

August 16th, 2019 - Tropical Cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution and background climate changes.

This research explored the sensitivity of large-scale surface climate and tropical cyclone activity to a doubling of CO2, using three coupled global climate models that span a range of horizontal atmospheric and land resolutions. The authors investigated the impact of resolution changes in the atmosphere within a family of coupled global climate models with identical ocean and sea ice components, and whose atmospheric configurations differ only in their horizontal resolution (~200km, ~50km, and ~25km). Read More…

August 1st, 2019 - A spring barrier for regional predictions of summer Arctic sea ice

A central goal of the sea ice research community is to assess the ability of climate models to accurately predict Arctic sea ice. A broad range of stakeholders have a pressing need for regional forecasts. Previous studies assessing sea ice prediction skill suggest that some regions in the Arctic have a “prediction skill barrier” in the spring season, where predictions of summer sea ice made prior to May are substantially less accurate than predictions made after May. However, this barrier has only been documented in a few climate models. This study employs a simple model that uses sea ice volume to predict summer sea ice area. Read More…

July 29th, 2019 - Seasonal prediction potential for springtime dustiness in the U.S.

Severe dust storms reduce visibility and cause breathing problems and lung diseases, affecting public health, transportation, and safety. Reliable forecasts for dust storms and overall dustiness are important for hazard preventions and resource planning. Most dust forecast models focus on short, sub-seasonal lead times, i.e., three to six days, and the skill of seasonal prediction is not clear. In this study we examine the potential of seasonal dust prediction in the U.S. using an observation-constrained regression model, with key variables predicted by a seasonal prediction model, GFDL’s Forecast-Oriented Low Ocean Resolution (FLOR). Read More…

July 18th, 2019 - Seasonal to multi-annual marine ecosystems prediction with a global Earth system model

Climate variations profoundly impact marine ecosystems and the communities that depend upon them. Anticipating these shifts using global Earth System Models (ESMs) could enable communities to adapt to climate fluctuations and contribute to long-term ecosystem resilience. The authors show that newly developed ESM-based marine biogeochemical predictions can skillfully predict observed seasonal to multi-annual chlorophyll fluctuations in many regions. The authors also provide an initial assessment of the potential utility of such predictions for marine resource management. Read More…

July 18th, 2019 - A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts

This paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts, by synthesizing recent studies that employed a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations). The AMOC, which includes a northward flow of warm salty water in the upper Atlantic and a southward flow of the transformed cold fresh North Atlantic Deep Water in the deep Atlantic, transports a huge amount of heat northwards in the Atlantic. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts, and an important source of enhanced decadal predictability and prediction skill. Read More…

May 17th, 2019 - Dynamical Seasonal Prediction of Tropical Cyclone Activity: Robust Assessment of Prediction Skill and Predictability

Dynamical seasonal prediction systems have recently shown great promises in predicting tropical cyclone activity. GFDL’s Forecast–oriented Low Ocean Resolution (FLOR) model (Vecchi et al. 2014) provides experimental predictions to National Centers for Environmental Prediction (NCEP) each month as part of the North American Multi-Model Ensemble (NMME) project. The current study analyzes this state-of-the-art prediction system and offers a robust assessment of when and where the seasonal prediction of tropical cyclone activity is skillful. Read More…

April 26th, 2019 - Prominence of the tropics in the recent rise of global nitrogen pollution

In this study, GFDL’s Land Model (LM3-TAN) was used to analyze the past two and half centuries of land nitrogen storage, fluxes, and pollution to the ocean and atmosphere, considering not only the effect of increased anthropogenic reactive nitrogen (e.g., synthetic fertilizers and atmospheric deposition associated with agricultural industrialization and fossil fuel combustion) inputs, but also the effects of elevated atmospheric CO2, land use and land cover change, and climate change. The results show that globally, land has served as a net nitrogen sink since the late 1940s, buffering coastal waters against eutrophication and society against greenhouse gas-induced warming. Read More…

rss_feedGFDL Research Highlights RSS Feed