Skip to content

GFDL Research Highlights

March 29th, 2019 - Toward Convective-Scale Prediction within the Next Generation Global Prediction System

Prediction of convective-scale storms, such as severe thunderstorms or tornadoes, has been traditionally performed with limited-area models. Issues related to the limited extent of the domain and the external boundary conditions remain significant challenges, so a global convection-permitting model without side boundaries is potentially more advantageous for mesoscale prediction. However, present-day computing resources are insufficient to support real-time global convective-scale weather prediction. Read More…

March 26th, 2019 - An assessment of the predictability of column minimum dissolved oxygen concentrations in Chesapeake Bay using a machine learning model

In parts of many estuaries and other coastal areas, such as the Chesapeake Bay, the concentration of oxygen dissolved in the water regularly drops to a value so low that many species of fish, crabs, and other ecologically and economically important creatures are unable to live. This condition, known as hypoxia, is often driven by warm temperatures and other climate conditions. Subseasonal to seasonal scale forecasting models, including those developed by GFDL, have shown skill at forecasting variations in temperature and other drivers of hypoxia up to several months in advance. Translating these forecasts into skillful forecasts of hypoxia could enable improved management of fisheries, reduce fishing effort, and allow more adaptive management of water quality. Read More…

December 3rd, 2018 - Natural variability of Southern Ocean convection as a driver of observed climate trends

Observations show that Arctic sea ice is rapidly declining, but observations also clearly show an expansion of Southern Ocean (SO) sea ice extent during the satellite era (1979 to the present). This modest increase is consistent with an observed SO cooling trend. The sea surface temperature (SST) and sea ice concentration (SIC) trends are not homogeneous in space, with opposing signs in the Amundsen-Bellingshausen Seas versus the Ross and Weddell Seas. Read More…

November 19th, 2018 - Change in future climate due to Antarctic ice melt

Ice sheet melt is a known neglected forcing in climate model simulations, contributing to uncertainties in climate projections. This is the first study to directly implement estimates of Antarctic ice sheet melt in a climate simulation, showing the actual change in climate projections due to the freshwater input. The authors used a large ensemble to confidently separate the freshwater signal from natural variability and show when we can expect these freshwater-induced effects to become significant. Read More…

April 24th, 2018 - Underestimated AMOC variability and implications for AMV and predictability in CMIP models

The Atlantic Meridional Overturning Circulation (AMOC) has profound impacts on various climate phenomena. Using both observations and simulations from multiple models of the Coupled Model Intercomparison Project, the authors estimated the amplitude of low-frequency AMOC variability in observations, compared it with those in model simulations, and examined the effects of low-frequency AMOC variability on the linkage between AMOC and Atlantic multidecadal variability (AMV). Read More…

March 20th, 2018 - Robustness of Anthropogenically Forced Decadal Precipitation Changes Projected for the 21st Century

Precipitation is characterized by substantial natural variability, including on regional and decadal scales. This relatively large variability poses a grand challenge in assessing the significance of anthropogenically forced precipitation changes. The authors use multiple large ensembles of climate change experiments to evaluate whether, on regional scales, anthropogenic changes in decadal precipitation mean state (i.e., ensemble average) are distinguishable – i.e., outside the range expected from natural variability. Read More…

February 7th, 2018 - On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter

There has been an increasing call for better seasonal precipitation prediction systems to support water resource management, particularly over regions like the western United States, where a multi-year drought persisted from 2012-2016. This research addresses the challenge of building a better prediction system by exploring the extent to which this past winter’s western U.S. precipitation anomalies may have been predictable, using experimental retrospective forecasts with GFDL’s Forecast-Oriented Low Resolution (FLOR) model. Read More…

rss_feedGFDL Research Highlights RSS Feed