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Abstract Seasonal forecast systems can skillfully predict summer Arctic sea ice up to 4 months in
advance. For some regions, however, there is a springtime predictability barrier that causes forecasts
initialized prior to May to be less skillful. Since this barrier has only been documented in a few general
circulation models (GCMs), we evaluate GCMs participating in phase 5 of the Coupled Model
Intercomparison Project. We first show sea ice volume skillfully predicts summer sea ice area (SIA) and
has similar skill to a perfect model experiment. Given this result, we assess regional SIA predictability
across each GCM and find a universal predictability barrier in late spring. For SIA at each summer target
month in the marginal seas of the Arctic basin, a notable drop in prediction skill occurs from June to May
in each GCM. This suggests summer sea ice forecasts initialized after 1 June will have substantially better
prediction skill than forecasts initialized before.

Plain Language Summary A central goal of the sea ice community is to assess the ability of
global climate models to accurately predict Arctic sea ice since regional forecasts are a pressing commodity
for a broad range of stakeholders. Previous studies assessing sea ice prediction skill suggest that some
regions in the Arctic have a “prediction skill barrier” in the spring season, where forecasts of summer sea
ice made prior to May are substantially less accurate than forecasts made after May. However, this barrier
has only been documented in a few global climate models. In this study, we employ a simple model that
uses sea ice volume to predict summer sea ice area. After showing that this simple model reliably predicts
regional Arctic sea ice area in the summertime, we test for this barrier across a range of global climate
models and find that a spring predictability barrier exists across nearly all global climate models. This
suggests that there may be a fundamental limit on skillful predictions of summer Arctic sea ice at regional
scales, where forecasts made prior to 1 June will be substantially less accurate than forecasts made after
1 June.

1. Introduction
The Arctic has undergone substantial changes over the last few decades. Near-surface air temperatures have
risen at approximately twice the rate of the global mean (Hansen et al., 2010). In terms of sea ice, studies
show a sharp decline in its summertime coverage (Cavalieri & Parkinson, 2012; Comiso, 2002; Comiso et al.,
2008; Parkinson et al., 1999; Serreze et al., 2007; Stroeve et al., 2007) and thinning across all months (Kwok &
Rothrock, 2009; Rothrock et al., 1999). Studies also show a significant loss of multiyear sea ice (Johannessen
et al., 1999; Maslanik et al., 2011; Rigor & Wallace, 2004), owing, in part, to a lengthening of the melt season
(Perovich & Polashenski, 2012; Stroeve, Markus, et al., 2014). Though most of these changes are striking
emblems of anthropogenic climate change, they have also fueled considerable interest in the predictability
of Arctic sea ice on seasonal to interannual time scales (e.g., Eicken, 2013; Jung et al., 2016). Given the
fundamental role that sea ice plays in the climate system, terrestrial and marine ecosystems, and human
population, skillful forecasts of Arctic sea ice are valuable to a broad range of stakeholders (e.g., Ford & Smit,
2004; Jung et al., 2016; Laliberté et al., 2016; Melia et al., 2016; Pizzolato et al., 2016; Regehr et al., 2007;
Smith & Stephenson, 2013; Wyllie-Echeverria & Wooster, 1998).

A recent goal of the sea ice community is to assess the predictability and prediction skill of Arctic sea ice.
Considerable effort has gone toward developing both statistical and dynamical sea ice prediction systems.
Numerous studies using fully coupled general circulation models (GCMs) have quantified the seasonal pre-
diction skill of pan-Arctic sea ice extent (SIE), for example, by performing suites of initialized retrospective
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forecasts, also known as hindcasts. These studies have found forecast skill for detrended pan-Arctic SIE at
lead times of 1–6 months (e.g., Blanchard-Wrigglesworth et al., 2015; Bushuk et al., 2017a; Chevallier et al.,
2013; Guemas et al., 2016; Merryfield et al., 2013; Msadek et al., 2014; Peterson et al., 2015; Sigmond et al.,
2013; Wang et al., 2013). Similarly, statistical models also show detrended pan-Arctic SIE prediction skill,
with significance at lead times of up to 6 months (Lindsay et al., 2008; Petty et al., 2017; Schröder et al., 2014;
Stroeve, Hamilton, et al., 2014; Wang et al., 2016; Williams et al., 2016; Yuan et al., 2016).

Complementing these GCM-based hindcast prediction assessments and statistical models is a number of
“perfect model” (PM) studies, which assess the predictability of a particular GCM in the case of perfectly
known initial conditions and no underlying model physics uncertainties. The only source of forecast error
in PM experiments is the chaotic growth associated with small initial condition errors; such an approach
provides guidance on the upper limits of predictability by asking how well a particular model can predict
itself (e.g., Collins, 2002). Previous PM studies have shown that the potential predictability for pan-Arctic
SIE remains statistically significant at lead times up to 1–2 years (Blanchard-Wrigglesworth & Bushuk, 2018;
Blanchard-Wrigglesworth, Bitz, et al., 2011; Bushuk et al., 2018; Day et al., 2016; Germe et al., 2014; Holland
et al., 2011; Koenigk & Mikolajewicz, 2009; Tietsche et al., 2014), which is considerably longer than that of
GCM-based initialized forecasts.

While these studies have provided an important first step in assessing the ability of fully coupled GCMs
to predict Arctic sea ice, the utility is somewhat limited for the aforementioned stakeholders. Arguably,
knowledge of regional sea ice predictability is of greater economic, ecological, and climatic consequences.
Given its value, studies have begun to establish important baselines for regional Arctic SIE prediction skill
using dynamical forecast systems. For instance, Day, Tietsche, and Hawkins (2014) use PM experiments
performed with HadGEM1.2 and find the seasonal ice zones of the North Atlantic have significant SIE pre-
dictability at lead times of 1–2 years. Similarly, Sigmond et al. (2016) demonstrate predictions of regional
ice advance and retreat dates are particularly skillful for areas such as Hudson Bay, Baffin Bay, Labrador
Sea, and Chukchi Sea. Krikken et al. (2016) find skill for sea ice forecasts at up to 6-month lead times for
the Barents Sea, Kara Sea, and the Northeast passage region. By performing multiple hindcast simulations
using a fully coupled GCM, Bushuk et al. (2017a) provide the first extensive analysis of regional Arctic SIE
prediction skill, highlighting both key physical mechanisms underlying skillful predictions and assessing
forecast skill in each region. Consistent with previous work that relates summer sea ice prediction skill to
sea ice thickness (Blanchard-Wrigglesworth, Armour, et al., 2011; Chevallier & Salas-Mélia, 2012; Collow
et al., 2015; Day, Hawkins, et al., 2014; Dirkson et al., 2017), Bushuk et al. (2017a) demonstrate that skillful
regional predictions of summertime sea ice depend on initialization of sea ice thickness, while wintertime
predictions hinge on initialization of subsurface ocean temperatures.

Additionally, Bushuk et al. (2017a) find that the East Siberian, Laptev, and Beaufort Seas each display a sharp
drop in SIE prediction skill in either May or June for all summer target months. Day, Tietsche, and Hawkins
(2014) also identify a drop in prediction skill in May but for pan-Arctic SIE. In their work, PM forecasts ini-
tialized in May are found to lose skill more quickly than forecasts initialized in July. More recently, Brunette
et al. (2019) present an observational-based statistical forecast model which uses winter coastal divergence
as a predictor of summer minimum SIE in the Laptev Sea. They find maximal skill when considering coastal
divergence up to the first week of May and report a drop in skill when the divergence is compared to the first
week of April, consistent with a spring predictability barrier. This spring prediction skill barrier has also been
shown to exist across the East Siberian, Laptev, and Beaufort Seas in PM experiments (e.g., Bushuk et al.,
2018), which suggests there may be a fundamental limit on regional summer sea ice forecasts. Yet, beyond
these studies, this springtime predictability barrier has not yet been quantified or examined in further detail.
Though it has been noted in a few GCMs, a key question that remains unanswered is the following: Does
this spring predictability barrier exist across other GCMs? Answering this question is critical for quantifying
the potential ability of GCMs to make accurate predictions of regional Arctic sea ice. Indeed, if this barrier
does exist, a crucial related question is the following: What date should forecasts be initialized for accu-
rate predictions of summer Arctic sea ice? As the Arctic undergoes change and ocean regions become ice
free, summertime sea ice predictions may prove to be a more pressing commodity. Knowing exactly when
to initialize GCMs will prove to be key for providing accurate sea ice forecasts.

Motivated by these questions, we test for the existence of this springtime predictability barrier across other
GCMs by using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In what fol-
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lows, we first use a fully coupled GCM to show sea ice volume (SIV) accurately predicts sea ice area (SIA) at
different summertime target months by comparing their lead-time correlations to a skill metric from a set
of PM experiments. This comparison shows that SIV is the dominant source of predictability for summer
SIA and captures the springtime prediction skill barrier. We then use this simple linear regression model to
assess SIA prediction skill for the ensemble of GCMs participating in CMIP5. After identifying the regional
SIA predictability across the GCMs, we characterize both the magnitude and temporal structure of SIA
prediction skill and discuss implications of these results.

2. Methodology
2.1. CMIP5 Output
We use monthly output from the preindustrial control runs of 38 different GCMs (see supporting infor-
mation Table S1) participating in CMIP5 (Taylor et al., 2012). While the preindustrial control simulations
have different regional Arctic sea ice concentration compared to the present day, the simulations are not
influenced by anthropogenic changes, which allows us to study Arctic sea ice predictability over long time
periods using variability unique to a constant climate. We consider two quantities for this study: sea ice
concentration and sea ice thickness. The set of GCMs evaluated for both quantities reflect those that pro-
vide the necessary output (see Table S1). All model output is interpolated to a common 1◦ × 1◦ analysis grid
using nearest-neighbor interpolation. Since regridding can result in differences from the native grid (Hofstra
et al., 2008), we compare regional SIA and SIV computed on each grid and find little difference between the
two. We analyze the last 200 years of each preindustrial control simulation to account for model spin up and
for consistency across the GCMs (see Table S1 for model years). With each GCM, we compute SIA and SIV
for pan-Arctic and 14 Arctic regions following the domains used by Day, Tietsche, and Hawkins (2014) and
Bushuk et al. (2017a; see Figure S1).

2.2. GFDL-FLOR Output
Since PM experiments were not performed across CMIP5, we cannot directly assess the maximum SIA pre-
diction skill of each GCM. To circumvent this problem, we make use of two experiment suites performed
using the same GCM, which allows us to assess the ability of SIV to accurately predict SIA (two quantities
that can be calculated from the CMIP5 output). We use two experiments described in Bushuk et al. (2018):
a 300-year control run and a set of PM experiments performed using the Geophysical Fluid Dynamics Lab-
oratory (GFDL) Forecast-oriented Low Ocean Resolution (FLOR) climate model (Vecchi et al., 2014). Both
the control run and PM experiments use radiative forcing and land use conditions that are representative
of 1990. We also use a 300-year control run that uses radiative forcing and land use conditions representa-
tive of 1860 to compare sea ice predictability in different time periods. The PM experiments branch from
the 300-year 1990 control integration of GFDL-FLOR using six different years and six start dates for each
year (1 January, 1 March, 1 May, 1 July, 1 September, and 1 November). Each start date contains 12 ensem-
ble members that are initialized with a random spatially uncorrelated Gaussian perturbation (with standard
deviation 10−4 K) to the sea surface temperature (SST) field and then run forward in time for 3 years. Output
from each control integration is interpolated to a common 1◦ × 1◦ analysis grid using the nearest-neighbor
algorithm and is then used to compute SIA and SIV for pan-Arctic and 14 regional Arctic domains (see
Figure S1).

2.3. Predictability Skill Metrics
To assess the ability of SIV to accurately predict SIA, we compare the skill identified using the PM exper-
iments to the correlation coefficients of SIV at different lead times and SIA at different target months.
Following Bushuk et al. (2018), we assess SIA prediction skill of the PM experiments by using the unbiased
anomaly correlation coefficient (ACC), which is a modified ACC definition designed to reduce biases associ-
ated with start date sampling that arise when using the standard definition of PM ACC of Collins (2002). The
unbiased ACC is defined as the square root of the mean squared-error skill score. The mean squared-error
skill score is computed by letting each ensemble member take a turn as a synthetic “truth” member and
using the ensemble mean of the remaining N − 1 members to predict this truth member (see Bushuk et al.,
2018). PM ACC values for even initialization months (1 February, 1 April, 1 June, 1 August, 1 October, and
1 December) are obtained by linearly interpolating the skill values obtained for odd initialization months,
following the procedure used in Bushuk et al. (2018). PM ACC values near one indicate high prediction skill
and values closer to zero indicate little-to-no prediction skill.
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Figure 1. Seasonal sea ice area (SIA) prediction skill from Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution climate model for
(a) pan-Arctic, (b) the Peripheral Arctic Seas, (c) the East Siberian and Laptev Seas, and (d) the Beaufort Sea determined by the perfect model (PM) anomaly
correlation coefficient (ACC) values from a set of PM experiments and when using sea ice volume (SIV) as a predictor of SIA. PM ACC values greater than 0.20
are significant at the 95% confidence level based on a t test. All correlations in the middle panels exceeding 0.16 are significant at the 95% confidence level based
on a t test accounting for autocorrelation. The black line in the middle panels indicates the largest decorrelation between two lead months for each target
month. The difference between the PM ACC values and SIV and SIA Pearson correlation coefficients is computed using the Fisher's z-transformation and is
shown in the bottom set of panels. Gray squares indicate significant differences at the 95% confidence level. Values are plotted as a function of target month and
forecast lead time and are only plotted for target months with SIA standard deviation greater than 0.03 × 106 km2 in the Geophysical Fluid Dynamics
Laboratory Forecast-oriented Low Ocean Resolution climate model control run with radiative forcing and land use changes representative of 1990.

3. SIV Skillfully Predicts Summer SIA
The lack of PM experiments across a wide range of GCMs means we must find another way to assess SIA
predictability within CMIP5. Since previous work suggests that SIV is an important source of predictabil-
ity for summer SIA (Blanchard-Wrigglesworth et al., 2017; Blanchard-Wrigglesworth, Armour, et al., 2011;
Blockley & Peterson, 2018; Bushuk et al., 2017a, 2017b; Collow et al., 2015; Day, Hawkins, et al., 2014;
Holland et al., 2011) and there is an abundance of sea ice concentration and sea ice thickness output from
GCMs participating in CMIP5, it is possible SIA and SIV can be used to assess Arctic sea ice prediction skill
across the GCMs. To evaluate the efficacy of SIV as a predictor of SIA, we first assess the ability of SIV anoma-
lies at different lead months to skillfully predict SIA anomalies at different target months. To carry out this
assessment, we compare the PM ACC skill identified by the GFDL-FLOR PM experiments to the correlation
coefficients of monthly SIV and SIA computed from the GFDL-FLOR 1990 control run. We compute corre-
lations between regional SIA and earlier SIV at lead times up to 11 months. Since the PM experiments are
initialized on the first of each month, we compute 2-month averages of SIV to create a first-of-the-month SIV
time series, which facilitates a clean comparison with the PM experiments. Correlations of SIV and SIA com-
puted using monthly centered time series produce similar results but are more difficult to compare with the
PM experiments. It is worth noting that the 2-month averages give an approximate first-of-the-month SIV
time series. Thus, any correlation between SIV and SIA shows the ability of SIV initialized approximately
on the first-of-the-month to predict monthly averaged SIA.
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Figure 1 shows the PM ACC values for SIA, correlation coefficients of previous monthly SIV with monthly
SIA, and their difference for four area domains: the pan-Arctic, the Peripheral Arctic Seas, the East Siberian
and Laptev Seas, and the Beaufort Sea. We choose these regions based on previous work assessing sea ice
prediction skill in GFDL-FLOR, which showed the spring predictability barrier exists in the East Siberian,
Laptev, and Beaufort Seas. Additionally, we choose to show the pan-Arctic and the Peripheral Arctic
Seas—which encompasses the Greenland, Iceland, and Norwegian Seas, Barents Sea, Bering Sea, Sea of
Okhotsk, and Hudson Bay (see Figure S1)—to illustrate the different predictability structures governing
SIA. The difference between the PM ACC values and SIV and SIA correlation coefficients is computed using
the Fisher's z-transformation (Meng et al., 1992), which allows the correlation values to become normally
distributed and thus directly compared.

When considering SIV as a predictor of pan-Arctic SIA (Figure 1a), we find that for winter target months,
a considerable amount of skill identified by the PM ACC values is not captured. The PM ACC values all
show high correlation values (>0.8) at lead times of up to 11 months, whereas the correlation coefficients of
pan-Arctic SIV and pan-Arctic SIA are much lower, leaving significantly large differences in the wintertime
(squares denote statistically significant differences at the 95% confidence level). Conversely, in the summer-
time, SIV acts as a better predictor of SIA, capturing more—though not all—of the PM ACC skill (Figure 1a).
These results are consistent with predictions of summer SIA depending on previous sea ice thickness and
wintertime SIA predictions depending on other sources of predictability, such as upper ocean heat content
(Bushuk et al., 2017a). For regions of seasonal ice cover (i.e., Peripheral Arctic Seas), the results are similar:
SIV can explain some of the summertime SIA variance and little of the wintertime SIA variance (Figure 1b).
This result is again consistent with upper ocean heat content being a better wintertime SIA predictor. For sea
ice in the Peripheral Arctic Seas and pan-Arctic, we find no clear indication of a springtime prediction skill
barrier; there is no consistent month of maximal correlation drop-off across target months (see black line).
While these correlation values display some diagonal structure, the diagonal features are less prominently
defined across a single initialization month.

For the East Siberian and Laptev Seas (Figure 1c)—two regions where the spring predictability barrier was
first identified—we find SIV skillfully predicts summertime SIA. The PM ACC values show a skill barrier,
where at lead times corresponding to May, there is a significant drop-off in prediction skill of approximately
0.3–0.4 (Figure 1c). By computing the maximal decorrelation across all target months (see black line), we
find this barrier also exists when using SIV to predict SIA in the East Siberian and Laptev Seas (Figure 1c).
Note during the wintertime, this region is fully ice covered, hence the zero correlations (i.e., white space) in
the winter months. Comparing the PM ACC skill to the SIV and SIA correlations, we find the correlations
capture this skill barrier across all target months with nearly all correlation coefficient differences being
statistically insignificant and falling below ∼0.1. However, the large positive correlations values leftover at
the growth seasons (see November target months of Figure 1c) indicates that there are other sources of SIA
prediction skill, which is consistent with ocean temperatures playing a role for SIA predictability in the ice
growth season (Blanchard-Wrigglesworth, Bitz, et al., 2011). Additionally, the large differences at lead zero
are consistent with SIA prediction skill resulting from SIA persistence and some atmospheric predictability
on submonthly time scales.

For the Beaufort Sea, we find similar results: SIV acts as a skillful linear predictor of summertime SIA
(Figure 1d). The SIV and SIA correlations explain most of the PM ACC values and capture the prediction
skill barrier. Indeed, the correlations miss the magnitude of PM ACC skill at both the beginning and end of
the summer season and at lead zero, which again suggests there are other sources of skill on submonthly
time scales and at seasonal transitions. Yet, even with these differences, the majority of the PM ACC values
can be explained when using SIV to predict SIA in the summertime. This suggests that SIV is the domi-
nant source of predictability for summer SIA in the Arctic and that SIV acts as a skillful linear predictor
of summer SIA—which is consistent with the results from Ordoñez et al. (2018). Most importantly for the
present study, the comparison associates the spring predictability barrier with the decorrelation of SIA and
SIV, which allows us to employ this regression model to test for the barrier across the free-running GCM
preindustrial control experiments available from the CMIP5 archive.

4. A Springtime Predictability Barrier Across CMIP5
We next apply the simple linear regression model to the CMIP5 ensemble. To do this, we correlate SIA
at January through December target months with SIV at lead times up to 11 months over the 200-year
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Figure 2. Pearson correlation coefficient of sea ice area (SIA) at January through December target months with sea ice volume (SIV) at lead times up to
11 months in the East Siberian and Laptev Seas. Correlation values are shown for the pre-inudstrial control simulations of 38 fully coupled general circulation
models based on a 200-year time series. The ensemble mean correlation structure for all general circulation models is shown in the last panel. All correlations
exceeding 0.18 are significant at the 95% confidence level based on a t test accounting for autocorrelation. The black line in each panel indicates the largest
decorrelation between two lead months for summer target months (June–October).
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Figure 3. Pearson correlation coefficient of sea ice area (SIA) at January through December target months with sea ice volume (SIV) at lead times of 0 to
11 months in the (a) Kara Sea, (b) East Siberian and Laptev Seas, (c) Chukchi Sea, (d) Beaufort Sea, and (e) Canadian Archipelago. Correlation values are based
on a 200-year time series from preindustrial control simulations and are shown for the ensemble mean of 38 general circulation models (GCMs). The black
squares in each panel denote the largest decorrelation between two lead months for May through October target months, where the square size indicates the
number of GCMs that decorrelate at that lead time. The largest square corresponds to 38 GCMs, and the smallest square corresponds to one GCM. The black
line is when most GCMs decorrelate.

time period in each regional domain. Doing this for each GCM allows us to assess SIA predictability across
the ensemble of GCMs. Again, before correlations are computed, we average SIV over 2 months, creat-
ing a first-of-the-month SIV time series that quantifies the ability of SIV initialized on the first of each
month to predict monthly averaged SIA. Here lead zero is the correlation of monthly centered SIA and
first-of-the-month SIV.

Figure 2 shows the correlation structure that emerges for all 38 fully coupled GCMs and the multimodel
ensemble mean when considering SIA in the East Siberian and Laptev Seas (see Figure S1). Though many
of the GCMs have different sea ice components and model biases (Massonnet et al., 2012), nearly all GCMs
show a remarkably universal decorrelation structure. Across the GCMs, we find there is a consistent and
significant drop-off in correlation corresponding to SIV in May or June. At each May or June lead time,
correlation coefficients drop-off by approximately 0.2–0.3 (see Figure S4). To show the tendency of each
GCM to decorrelate at the same initialization month regardless of the SIA target month, we compute the
months of the largest decorrelation for the summer season (June–October). Correlations are overall lower
for November–April target months since most regions are fully ice covered and have little SIA variance
(see Figure S3). The black line in each plot represents the months of largest decorrelation and thus a pre-
dictability barrier. The months of largest decorrelation for the majority of the GCMs (∼24) occurs when SIV
transitions from 1 June to 1 May. Indeed, there is some intermodel spread in the timing of decorrelation. For
instance, the largest decorrelation for some GCMs (e.g., BNU-ESM, CCSM4, CESM1(WACCM), CMCC-CM,
EC-EARTH, FGOALS-g2, and FGOALS-s2) occurs at both May to April SIV transitions and June to May SIV
transitions, while others (e.g., CMCC-CMS) show a distinct correlation coefficient structure reminiscent of
a barrier but no universal decorrelation time (as indicated by the flat black line). Though there is sizable
spread, there is also a tendency for the majority of the models to decorrelate at the same exact initialization
time; the months of the largest SIV decorrelation are from 1 June to 1 May in the ensemble mean, which
suggests the predictability barrier occurs between 1 June and 1 May.

In addition to intermodel spread in the timing of the barrier, there is also intermodel spread in the magni-
tude of correlations across GCMs. MIROC-ESM-CHEM, MIROC-ESM, and MIROC5 all show substantially
higher correlations at all target months when compared to the rest of the GCMs, which likely indicates
spread in PM predictability (e.g., Blanchard-Wrigglesworth & Bushuk, 2018). There is also considerable
intermodel variability in seasonal cycles of SIA and SIV (see Figure S2). Yet, despite this spread, each GCM
exhibits a spring predictability barrier. While the large intermodel spread in both the timing of decorrelation
and magnitude of correlations warrants further work to explain these differences, for the remainder of this
analysis, we focus on the nearly universal correlation structure that suggests an inherent spring predictabil-
ity barrier for regional forecasts of summer Arctic sea ice. Such similar correlation structures across GCMs
in the East Siberian and Laptev Seas suggest other regions may have this predictability barrier as well. To
examine for this barrier in other regions, we perform the same analysis for each regional domain. Since the
majority of our analysis focuses on the CMIP5 preindustrial controls runs—which have considerably dif-
ferent forcing scenarios and land use conditions than the present day—we select regions that have a large
magnitude of summer SIA variance (see Figure S3).
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Figure 3 shows the correlation coefficient values between SIA at January through December target months
and SIV at lead times of 0 to 11 months in the Kara Sea (Figure 3a), East Siberian and Laptev Seas (Figure 3b),
Chukchi Sea (Figure 3c), Beaufort Sea (Figure 3d), and Canadian Archipelago (Figure 3e). Since each
GCM exhibits a similar correlation coefficient structure, the ensemble mean correlation coefficient struc-
ture of all 38 GCMs is shown. Note the ensemble mean correlation pattern is computed using the Fisher's
z-transformation (Meng et al., 1992) to allow for the correlation values of each GCM to be normally dis-
tributed. When considering the ability of SIV to predict SIA in the Kara Sea (Figure 3a), a distinct correlation
structure emerges that shows a consistent late spring decorrelation of SIA and SIV. The black line repre-
sents the most common decorrelation time across GCMs. The correlation coefficients drop by ∼0.2–0.3 at
all May and June SIV lead times (see Figure S4). To quantify the intermodel spread in the correlation pat-
terns, we also calculate the months of the largest decorrelation between summertime SIA target months
and SIV lead times for each GCM. The square in Figure 3 indicates the number of GCMs that decorrelate
at that specific lead time, with the largest square corresponding to all 38 GCMs and the smallest square
denoting a single GCM. For the Kara Sea (Figure 3a), the months of largest decorrelation tend to be from
June to May. Though, it is worth noting that there is a fairly equal split between the GCMs that decorrelate
from May to April and those that decorrelate from June to May. Similarly, for the East Siberian and Laptev
Seas (Figure 3b), Chukchi Sea (Figure 3c), and Beaufort Sea (Figure 3d), we find a distinct diagonal feature
of decorrelation. Computing the largest correlation drop-off across GCMs (the black line) suggests the pre-
dictability barrier in these regions occurs between 1 June and 1 May. The Beaufort Sea (Figure 3d) has one
of the most striking predictability barriers, with the largest drop-off in correlation at each summer target
month (∼0.3) and a tightly constrained intermodel spread in barrier timing (Figure 3d). For the Canadian
Archipelago (Figure 3e)—a region that encompasses the Northwest Passage—there are lower correlations,
but there remains a similar barrier structure with significant decorrelation occurring as SIV transitions from
1 June to 1 May. The lower correlations could be a result of how the Canadian Archipelago is represented
in these coarse-resolution GCMs, which varies considerably.

5. Discussion and Conclusion
Predictions of Arctic sea ice are needed by a broad range of stakeholders, especially on regional scales
(Eicken, 2013; Jung et al., 2016). Previous studies assessing GCM-based forecasts, however, suggest that there
may be a predictability barrier in the springtime for sea ice in some Arctic regions (Bushuk et al., 2017a;
Day, Tietsche, et al., 2014). Thus, forecasts of summer Arctic sea ice concentration may be less accurate prior
to May. Still, this barrier has yet to be fully explored and quantified across an ensemble of GCMs due, in
part, to the lack of PM experiments. A simpler framework is needed to assess Arctic sea ice predictability
and the robustness of this barrier across GCMs. In this study, we developed such a framework and evalu-
ated seasonal SIA predictability using output from the preindustrial control runs of an ensemble of GCMs
participating in CMIP5. By employing a simple linear regression model that uses previous monthly SIV and
monthly SIA, we have found that SIV acts as a skillful predictor of summertime SIA and characterizes the
summer SIA predictability in a range of regional domains. In these regions, the correlation coefficients of
lead-time SIV and target-month SIA are comparable to PM ACC skill estimates—which provide guidance
on the maximum available predictability (see Figure 1). A potential caveat to this prediction skill compari-
son is the use of a single GCM. A useful extension of this line of research would be to compare PM skill in
other GCMs with the prediction skill of SIV. This result does indicate, however, that SIV is the dominant
source of predictability for summer SIA and suggests that this simple linear regression model can be applied
to the entire CMIP5 ensemble to assess summer Arctic sea ice predictability across a larger swath of GCMs.

Despite having considerably different sea ice components (Massonnet et al., 2012) and a large spread of
SIV and SIA seasonal cycles (see Figure S2), nearly all of the CMIP5 GCMs display a remarkably similar
correlation structure that shows substantial decorrelation as SIV transitions from June to May in the East
Siberian and Laptev Seas (see Figure 2). The black lines in each panel correspond to the initialization months
that have the largest drop-off in correlation for summer target months (June–October). Though there is
some intermodel spread in the timing of decorrelation, there is a tendency for all GCMs to decorrelate at a
similar lead time: The month of largest SIV lead time decorrelation for most GCMs is from June to May for
all summer target months. This universal decorrelation feature suggests there is a predictability barrier that
occurs between the months of June and May. Such similar correlation coefficient structures across GCMs in
the East Siberian and Laptev Seas (Figure 2) raises another question: Does this spring predictability barrier
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exist in other regions of the Arctic? Figure 3 shows the ensemble mean correlation pattern of all 38 GCMs
for the Kara Sea, East Siberian and Laptev Seas, Chukchi Sea, Beaufort Sea, and Canadian Archipelago. In
these regions, the structure and magnitude of decorrelation for all summer target months also suggests there
is a springtime predictability barrier that occurs between 1 June and 1 May. Indeed, there remains sizable
spread in the timing of decorrelation across GCMs (as indicated by the size of the black squares), but there is
a tendency for each GCM to maximally decorrelate from June to May (see black line). Perhaps most notably
is that these Arctic regions—the marginal seas of the Arctic basin—encompass most of the viable summer
shipping routes, which suggests this predictability barrier may limit accurate forecasts for end users.

So how early can models be initialized and still make highly skillful forecasts of summer sea ice? Though
we show that this barrier is robust, further experiments with daily temporal resolution are required to pin-
point its precise date. How far into the melt season must GCM-based predictions be initialized in order to
avoid the unpredictable effects of atmospheric chaos and melt onset variability? Here, based on a diagnos-
tic regional predictability analysis of CMIP5 GCMs, we suggest that a 1 June initialization is sufficiently
past the spring predictability barrier. This suggestion, however, is made using monthly output, which limits
the temporal resolution, and thus precise barrier timing. Additionally, the use of preindustrial control sim-
ulations may limit constraints on the exact timing of the barrier since some processes, such as melt onset,
occur later in the spring when compared to the present-day climate. However, a comparison of a 1990 and
1860 control run in GFDL-FLOR shows that the timing of maximum decorrelation is broadly consistent
between the two time periods (see Figure S5), indicating that the barrier timing diagnosed from preindus-
trial control runs is also relevant for climates similar to the present day. Indeed, the 1990 predictability
barrier is sharper and has larger magnitude correlations of SIA and SIV (see Figure S5), which suggests that
volume-based summer sea ice predictability may be a function of climate mean state, consistent with the
earlier findings of Holland and Stroeve (2011). In addition to quantifying sea ice prediction under a chang-
ing climate, future research should address the intermodel variability in SIA prediction skill. MIROC-ESM,
MIROC-ESM-CHEM, and MIROC5 all show considerably higher correlations of SIA and SIV when com-
pared to the other GCMs. Understanding why SIV acts as a better SIA predictor with some GCMs and less
so with others (e.g., CSIRO-Mk3.6.0) may permit a better quantification of the ability of GCMs to predict
Arctic sea ice (e.g., Blanchard-Wrigglesworth & Bushuk, 2018). Perhaps more important, however, is the
robustness of this spring predictability barrier, which raises an important question: What physical mecha-
nism is so universal across GCMs? The barrier timing corresponds quite closely with the timing of surface
melt onset, which is largely dictated by unpredictable year-to-year atmospheric conditions (Mortin et al.,
2016; Stroeve, Markus, et al., 2014). While future work is required to address the processes in the spring that
generate a predictability barrier, this suggests that the ice-albedo feedback may be an important contributor.

In the context of operational Arctic sea ice forecasts, our analyses suggest accurate predictions may hinge on
better observational data sets that allow for initializations sufficiently past the date of this barrier. Currently,
algorithms that derive Arctic sea ice thickness terminate in mid-April since it is difficult to differentiate
between sea ice leads and surface melt ponds during the melt season (Ricker et al., 2014; Tilling et al., 2015).
The spring predictability barrier identified in this study highlights the critical importance of extending sea
ice thickness products as far as possible into the melt season to allow for an observationally constrained
initialization of sea ice thickness near 1 June. We hope this study will motivate future work along these lines.
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