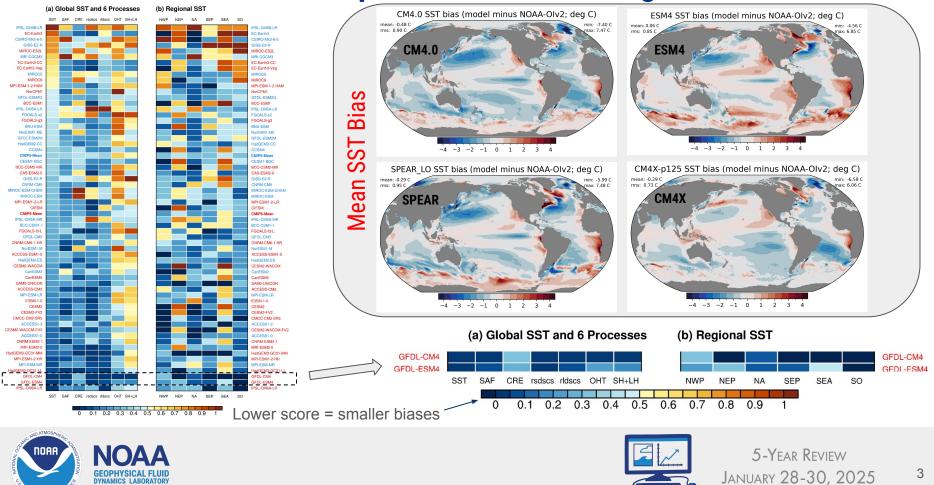
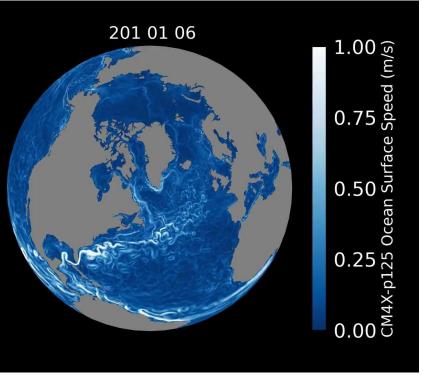

Major New GFDL Coupled Climate and Earth System Models

Mitchell Bushuk, Baoqiang Xiang

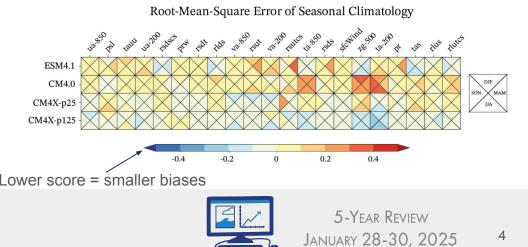
Q1: Concerning GFDL's core strength of building and improving models of the weather, oceans, and climate for societal benefits, how can GFDL leverage advances in science and computational capabilities to improve its key models? What are the strengths, gaps, and new frontiers?


5-Year Review January 28-30, 2025

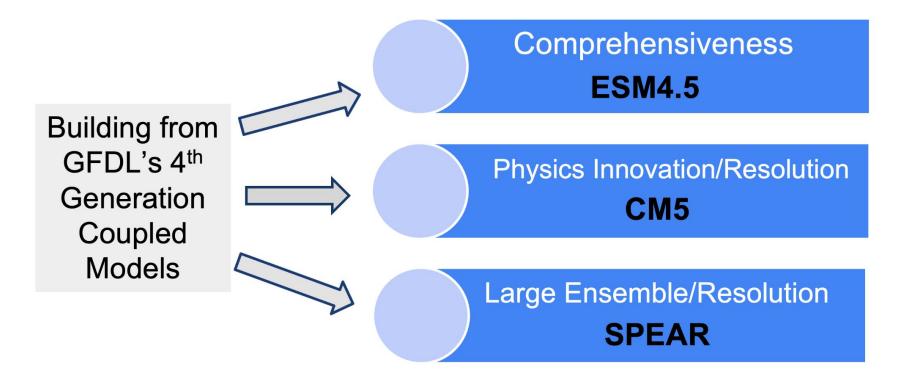
Overview of GFDL Coupled Models


Performance of GFDL Models in CMIP6

GFDL's 4th Generation Coupled Models are amongst the best in CMIP6

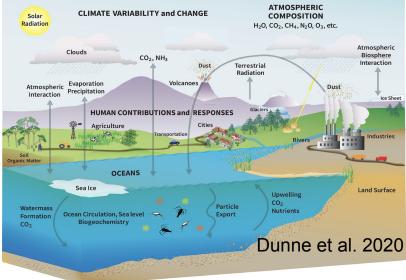

DYNAMICS LABORATORY

Success of GFDL's 4th Generation Coupled Models: CM4X


1: Griffies et al. Part I, Part II, Submitted to JAMES

- CM4X¹: Two recently developed high-resolution coupled climate models.
 - CM4X-p125: 1/8° ocean/ice; 50km atmos/land.
 - CM4X-p25: **1/4° ocean/ice; 50km atmos/land**.
- Both CM4X models improve upon the biases of CM4 and ESM4.
- 1/8° configuration has very low thermal drift.
 - See Pre-Req slides from S. Griffies for more information.

Ongoing and Future GFDL Global Coupled Model Development


5-Year Review January 28-30, 2025

GFDL's New Earth System Model, ESM4.5: "Fast Track" contribution supporting IPCC/AR7

Core Science Priorities

- A. **Historical Earth System Changes:** Faithfully represent historical climate change, CO₂ responses and chemistry-climate interactions driven by emissions to assess changes in the Earth System.
- B. **Climate Risks and Tipping Points:** Determine risks associated with stabilization at various global warming levels, including the likelihood of a wide range of tipping points (e.g. TIPMIP).
- C. **Climate-Ecosystem Interactions:** Evaluate implications of too much or too little water for managed and unmanaged ecosystems, including at the sub-grid stakeholder relevant scale.
- D. **Climate Mitigation and Intervention:** Evaluate the viability and implications of climate change mitigation strategies including climate intervention techniques (e.g., CDR, SRM).

5-Year Review January 28-30, 2025

6

Novel ESM4.5 Capability Goals and Model Features

A. Historical Earth System Changes

Merge recent GFDL successes in climate and Earth system fidelity; Snow-dust-albedo interactions and snow physics improvements; Improved surface turbulent exchanges, Sea salt emissions; Reproduce historical temperature and CO₂ record.

C. Climate-Ecosystem Interactions

Global coastal/shelf/slope marine ecosystems with expanded biodiversity and improved physiology and chemistry; Land management complexity; Improved soil carbon-microbial interactions and processes.

B. Climate Risks and Tipping Points

Interactive fire emissions; Sub-grid hydrological heterogeneity; Treeline parameterization for high latitudes and altitudes; Next generation soil microbial carbon representation

D. Climate Mitigation and Intervention

Improved representation of plant biogeography and land and ocean carbon sinks; Improvements to natural and anthropogenic aerosol and chemistry interactions; Applications with CO_2 emissions and removal forcing.

GFDL ESM4.5: Model Configuration and Timeline

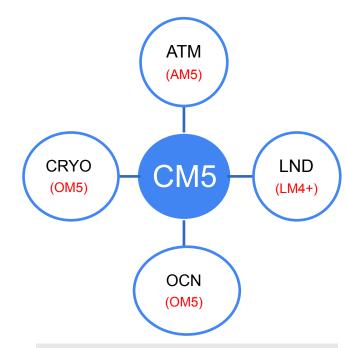
	ESM4.1	ESM4.5	
Atmos. Physics	AM4.1; 100km, 49 levels	AM4.5; 100km, 49 levels	
Atmos. Chem	AM4.1-atmos-chem AM4.5-atmos-che		
Land	LM4.1; 100km	LM4.5; 100km	
Ocean (MOM6)	OM4; 1/2°, 75 levels	OM5; 1/4°, 75 levels	
Sea Ice (SIS2)	OM4; 1/2°, 5 category	OM5; 1/4°, 5 category	
Ocean BGC	COBALTv2 (33 tracers)	COBALTv3 (40 tracers)	

Timeline:

June 2025: Code frozen

March 2026: Spinup and Historical runs complete

Dec 2026: Deliver Fast Track data to ESGF



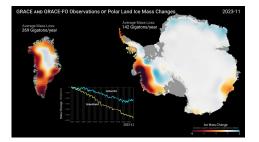
8

GFDL's Next-generation Coupled Climate Model (CM5)

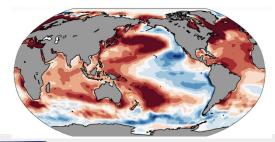
The goal of CM5:

The CM5 system will unify efforts across GFDL to develop a seamless modeling tool that supports **NOAA's mission** to skillfully predict regional and global **extreme events**, while addressing **stakeholder needs and societal challenges**.

Coupling through Flexible Modeling System (FMS)



5-Year Review January 28-30, 2025


9

CM5 Grand Challenges

- How will global and regional sea levels evolve, including the response to changes in Earth's ice sheets?
- How will the likelihood of **extreme** weather and climate events change over time?
- How does the historical and future pattern of surface temperature change relate to variability and anthropogenic forcing?
- How can CM5 results be utilized to meet NOAA stakeholder needs, enhance research partnerships and meet social challenges?

5-Year Review January 28-30, 2025 10

Target Resolutions and Timelines

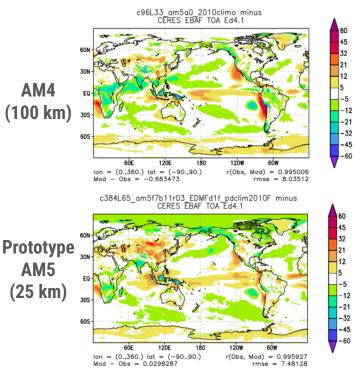
CM5-LR (targeted completion 2026):

- 100-km AM5/LM4+ and 25-km OM5
- Target throughput 8 yrs per day on 4096 cores (e.g. **1.7%** of Gaea C5)

CM5-HR (targeted completion 2028):

- *○* 25-*km* AM5/LM4+ and 8-*km* OM5
- Target throughput 5 yrs per day on 70,400 cores (e.g. **30%** of Gaea C5)

CM5-LR will likely participate in the DECK and ScenarioMIP simulations as part of CMIP7. GFDL will be among the first modeling groups to provide the capability of synchronous coupling between the ice sheets and other model components.



AM5 Development Highlights

Model component	AM4.0	AM5	
Radiation	Sea/ESF (1999)	RTE-RRTMGP (2019)+GFDL Cloud Optic	
Convection	Double Plume Convection (DPC)	Non-equilibrium convection DPC (Zhang et al. 2024)	
Boundary Layer	Lock et al (2000)	Eddy Diffusivity Mass Flux (EDMF) (Han and Bretherton 2009)	
Cloud Microphysics	Rotstayn-Klein	Morrison-Gettleman-2 (Guo et al. 2020, 2021)	
Aerosol-cloud interaction	Liquid only (Ming et al. 2006)	Dust and temperature-dependent ice nucleation (Fan et al. 2019)	
Aerosol chemistry	Simplified	Updated aerosol emissions and deposition	
Land	LM4	LM4+	
Air-sea flux algorithm	COARE3.5	HWRF version 2017	
Orographic gravity wave drag	Garner et al (2005)	Updated Garner et al. (2005)	
Non-orographic gravity wave drag	Alexander and Dunkerton (1999)	Beres et al. (2004)	
Stratospheric ozone	Prescribed	Linear ozone (Lin and Ming 2021)	
Dynamical Core	FV3 v2017	FV3 v2023	
Implement	ed 🛛 🔵 Ongo	ing	

Improved Stratocumulus Simulation

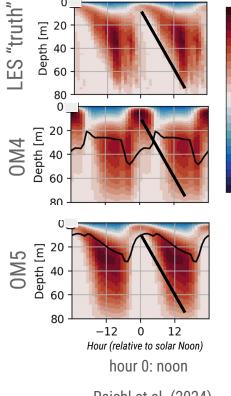
Bias of TOA shortwave absorption

5-Year Review January 28-30, 2025 12

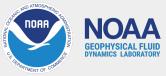
RECEIPTION REPORT OF THE REPOR

ATMOS

OM5 Development Highlights


Improved diurnal cycle of tropical mixing

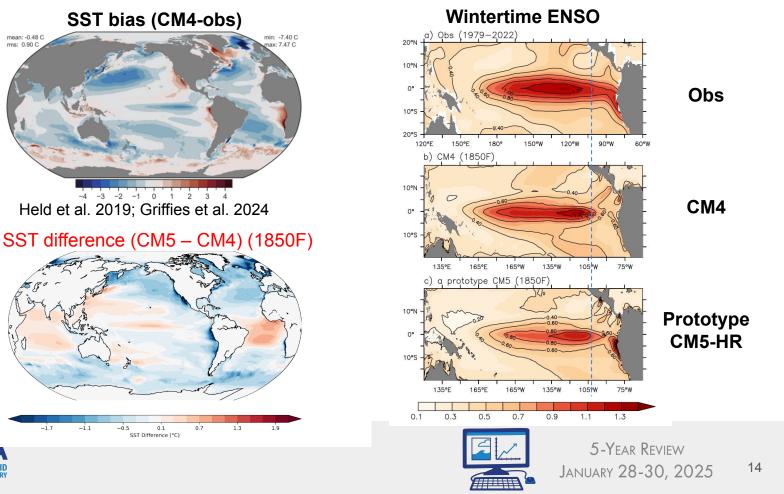
5.0


-2.5 0.0 2.5 Temperature Flux (*w*/*T*') [°C m/d]

5.0

Physics	ОМ4	OM5	
Interactive Ice Sheet component	N/A	MOM6-IS (Sergienko et al., in prep)	
Non-Boussinesq ocean	N/A	Hallberg et al. (in prep)	
Modern Equation of State	Wright (1997)	Roquet (2015)	
Improved surface and Bottom Boundary layer mixing	ePBL and BBL (Legg et al. 2013, Reichl and Hallberg, 2018)	Improved ePBL and BBL (Reichl et al. 2024, Griffies et al. submitted)	
Internal wave mixing	Harrison and Hallberg (2008)	Improved mixing in high-latitudes; Ray tracing scheme (Dussin et al., in prep)	
Submesoscale mixed layer eddies Fox-Kemper et al. (2011)		Bodner et al. (2023)	
Sea ice ridging N/A		Icepack Column Physics	
Improved ice-ocean coupling	Concurrent coupling	Fast dynamic coupling (Morrison et al., <i>in prep</i>)	

Reichl et al. (2024)

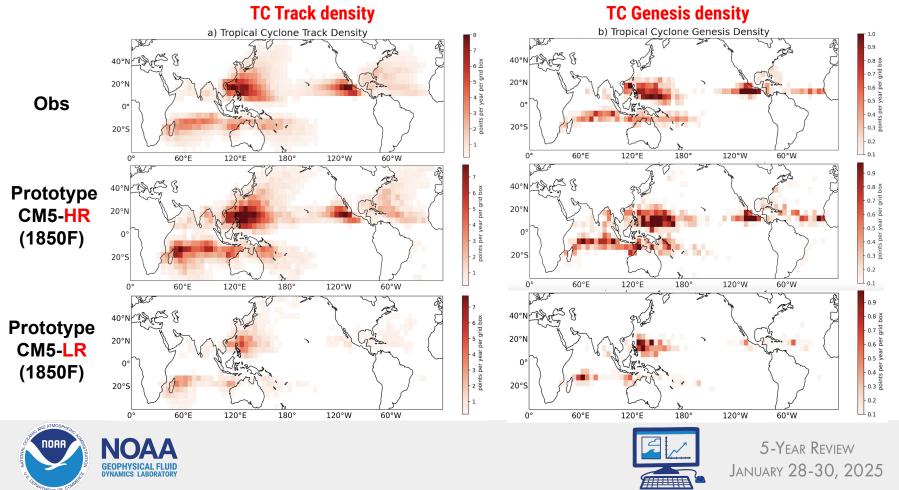


Implemented

Preliminary results from a prototype CM5-HR simulation (SST, ENSO)

CM4 (100 km AM4) mean: -0.48 C

-1.7


NUAA

-1.1

rms: 0.90 C

Prototype CM5-HR (25 km AM5, 25 km ocean)

Preliminary results from a prototype CM5 simulation (TCs)

New GFDL Coupled Models to Address NOAA Mission Objectives

EV/2 dues to	SHIELD (2020 & onward) Weather to Seasonal Data-Initialized Physical Prediction	SPEAR (2020 & onward) Seasonal to Multi-decadal Data-Initialized Physical Prediction	Full Earth System Projection	CM5 (2026, 2028) Decadal to Century Physical Climate Sea Level
FV3 dycore	SHiELD	AM4	AM4.5	AM5
Atmosphere	3 to 13 km; 91 Level	25 to 100 km; 33 Level	100 km; 49 Level	25 or 100 km; 65 Level
Atmospheric	Simple Aerosols	Simple Chemistry	Full Chemistry	Simple Chemistry
Chemistry		& Aerosols	& Aerosols	& Aerosols
LM4	NOAH LSM	LM4.0/LM4.2	LM4.5	LM4+
Land	(Initialized LM4.2i planned)	Ecosystems	Ecosystems, Fire, Snow	Orography Aware
MOM6 / SIS2	Mixed Layer	OM4 -derived 1° to $\frac{1}{12}$; 75 Layer	OM5	OM5 (non-Boussinesq)
Ocean / sea-ice	(OM5 planned)		¼°; 75 Layer	¼° to ¹ / ₁₂ °; 75 Layer
FMS Coupler & Infrastructure	Atmospheric Ensemble Data Assimilation	Ensemble Data Assimilation	COBALTv3 Ocean Ecosystems	Interactive Dynamic Ice Sheets

5-Year Review January 28-30, 2025