



# **Overview of GFDL's next generation atmospheric model AM5**

Presented by Pu Lin on behalf of the AM5 development team

Q1: Concerning GFDL's core strength of building and improving models of the weather, oceans, and climate for societal benefits, how can GFDL leverage advances in science and computational capabilities to improve its key models? What are the strengths, gaps, and new frontiers?

### AM5 scope

- Advance NOAA's goals to increase the Nation's ability to prepare for, adapt to, and mitigate the negative impacts of weather and climate extremes associated with an evolving climate.
- Realistic representation of weather and climate phenomena that would improve predictions and projections from the sub-seasonal to centennial.

#### **Priority goals:**

- Simulation of climate **extremes** with a focus on the US
- Prediction on subseasonal to seasonal timescales
- Characteristics of regional surface climate over the 20th century



#### Development began in 2022. Expected delivery in 2025





# Higher resolution to better resolve extremes

Max cumulative precip over a 3hr-period in a year 45 ING

|                       | AM4.0     | AM5                             |        |
|-----------------------|-----------|---------------------------------|--------|
| Horizontal resolution | 100km     | 100km (AM5-Lo)<br>25km (AM5-Hi) | →<br>1 |
| Vertical levels       | 33        | 65                              |        |
| Model top             | 1hPa/43km | 0.01 hPa/75km                   |        |



### Challenges:

- Require systematic adjustment of all model settings \*
- Balance between performance and resources \*





3

## More advanced representation of atmos/land processes:

### Better predictions and projections across timescales

| Model component                  | AM4.0                                                                           | AM5                                                                | Impacts                                       |
|----------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| Radiation                        | SEA/ESF (Schwarzkopf and<br>Ramaswamy 1999, Freidenreich and<br>Ramaswamy 1999) | RTE+RRTMGP (Pincus et al. 2019)<br>+ GFDL Cloud Optics             | radiative forcing, cloud radiative effects    |
| Convection                       | DPC (Zhao et al. 2018)                                                          | Non-equilibrium convection DPC<br>(Zhang et al. 2024)              | diurnal cycle of land precipitation           |
| Boundary layer                   | Lock et al. (2000)                                                              | NCEP EDMF (Han and Bretherton 2019)                                | shallow clouds, tropical circulation          |
| Cloud microphysics               | Rotstayn-Klein (Rotstayn et al. 2000)                                           | Morrison-Gettleman-2 (Guo et al. 2020, 2021)                       | stratocumulus, aerosol indirect effect        |
| Aerosol-cloud interaction        | Liquid only (Ming et al. 2006)                                                  | Dust and temperature-dependent ice nucleation<br>(Fan et al. 2019) | cloud phase partitioning, climate sensitivity |
| Aerosol chemistry                | Simplified                                                                      | Updated aerosol emissions and deposition                           | decadal variations of surface temperature     |
| Land                             | LM4                                                                             | LM4+                                                               | regional climate characteristics              |
| Air-sea flux algorithm           | COARE3.5                                                                        | HWRF version 2017                                                  | tropical cyclone intensity                    |
| Orographic gravity wave drag     | Garner et al (2005)                                                             | Updated (Garner et al. 2005)                                       | polar vortex climatology                      |
| Non-orographic gravity wave drag | Alexander and Dunkerton (1999)                                                  | Beres et al. (2004)                                                | Quasi-Biennial Oscillation, polar vortex      |
| Stratospheric ozone              | Prescribed                                                                      | Linear ozone (Lin and Ming 2021)                                   | polar vortex variability                      |
| Dynamical core                   | FV3 v2017                                                                       | FV3 v2023                                                          | tropical cyclone                              |



 SEA: Simplified Exchange Approximation
 ESF: Exponential Sum Fit technique

 RTE: Radiative Transfer for Energetics
 RRTMGP: Rapid Radiative Transfer Model for General circulation model applications-Parallel

 DPC: Double Plume Convection
 EDMF: Eddy-Diffusivity Mass-Flux

 COARE: Coupled Ocean-Atmosphere Response Experiment bulk algorithm
 HWRF: Hurricane Weather Research and Forecasting model



4

# A new parameterization for non-orographic gravity waves

#### Why do we need it?

- A realistic representation of the stratosphere provides long-range predictability
- Reliable gravity wave parameterizations are crucial for simulating stratospheric circulation

### What's new?

- Explicit expression of the wave source in terms of convection
- More realistic Quasi-Biennial Oscillation (QBO) climatology and variability

Fruitful collaboration with the NorthWest Research Associates







5-Year Review January 28-30, 2025

5

# Updates in the radiative transfer calculations

Radiative transfer scheme sets the foundation for accurate and efficient climate projection and numerical weather prediction.

#### <u>Benefits:</u>

- Switching to the RTE+RRTMGP\* framework takes advantage of the cumulative development over decades from the community.
- Modernized infrastructure allows flexibility to address user-tailored needs.
- A new unified parameterization developed at GFDL (Feng et al. submitted) yields more physical representation of clouds and precipitation.





**\*RTE+RRTMGP**: Radiative Transfer for Energetics and Rapid Radiative Transfer Model for General circulation model applications-Parallel (Pincus et al. 2019)



## **AM5 Development Summary and Outlook**

Leveraging advances in science and computational capabilities, GFDL is developing AM5 to better address NOAA's goals:

- Higher resolution to better simulate extremes
- More advanced physics (major updates in almost all components, see prerequisite slides) to improve regional climate simulations
- Seamless application from sub-seasonal to centennial



Joint efforts across divisions at GFDL and support/collaboration inside and outside NOAA (CPT projects, NOAA CVP/ERB/MAPP projects)



CPT: Climate Process Team CVP: Climate Variability and Predictability ERB: Earth's Radiation Budget MAPP: Modeling, Analysis, Predictions and Projections

