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Seasonal to Decadal Variability and Predictability

Nat Johnson, Liping Zhang, Hiroyuki Murakami

Q2: Concerning NOAA’s key mission element of understanding, predicting, and projecting 
changes in the Earth System, how can GFDL drive further advances in these areas, including 
extremes and environmental hazards, through scientific innovation based on observations, 
theory, and modeling? Where are the strengths, gaps, and new frontiers?



GFDL is advancing the science and application of 
seasonal-to-decadal predictions and projections.
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Quality: 
● Promoting global, seamless climate prediction and projection from 

seasonal to centennial timescales with SPEAR 
● Advancing the science of prediction and projection of regional climate 

extremes 
Relevance:

Performance: 

● Directly addressing the four NOAA Research societal challenges
● Developing or enhancing experimental methodologies and 

products that reach a broadening range of stakeholders

● Real-time seasonal and decadal forecasts delivered routinely
● Synergistic collaborations consistently delivering high-impact science

Selected publications from 2020 to 2024 -> [Link]

Text in blue boxes represents 
actions that address a 2019 
GFDL Review comment.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019ms001895
https://www.gfdl.noaa.gov/wp-content/uploads/2025/01/Seasonal-Decadal-Selected-Publications-2020-2024.pdf


Providing real-time seasonal predictions with SPEAR
● GFDL provides real-time seasonal predictions to NCEP 

each month through our participation in the North 
American Multi-Model Ensemble (NMME).

● Relevance: Provides actionable guidance for NOAA’s 
climate monitoring and seasonal outlooks

● Quality: Provides the community with a unique set of 
tools for seamless prediction and projection through the 
combination of retrospective and real-time seasonal 
forecasts with free-running SPEAR large ensembles

● Performance: Reliably delivered each month with 
demonstrated high skill for societally relevant phenomena
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SPEAR Predictions (1 Dec 24 Init) 
ENSO

Sep Arctic SIE

Examples of SPEAR 
seasonal forecast 
outputs from the 1 Dec 
2024 initialization. 
(Top) 12-month ENSO 
(Niño-3.4 SSTA index) 
forecast, including the 
previous month’s 
forecast. (Solid lines 
for ensemble means 
and dotted lines for 
individual ensemble 
members.) (Bottom) 
September Arctic sea 
ice extent forecast 
(blue) with 
observations (black) 
and hindcasts (red).  

R3: Be ready to reach out to outside entities
R5: Define appropriate scope toward model development

https://www.cpc.ncep.noaa.gov/products/NMME/
https://www.cpc.ncep.noaa.gov/products/NMME/


Innovative approaches for improving simulations and 
reducing forecast biases
● An innovative ocean tendency adjustment (OTA) minimizes 

ocean biases and climatological drift in seasonal forecasts.

● Flux-adjustment (surface heat, salt, and momentum) used 
as another approach for reducing tropical ocean and global 
wind biases while also providing a tool for diagnosing 
sources of biases.

● Model-analog seasonal forecasts being developed as a 
complementary prediction approach that (1) has low 
computational cost, (2) provides superior forecast skill 
under some conditions, and (3) makes forecast skill a 
feasible model-development metric.
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Forecast skill (ACC) of the (a) standard and (b) 
model-analog SPEAR hindcasts of ENSO (Niño-3.4 SSTA 
index) over the 1991-2022 period. The ACC differences (c) 
indicate several seasons with superior model-analog 
forecast performance (warm colors). From Zeng et al. (in 
prep.).

R6: Incorporate existing observational data toward GFDL 
model improvement

https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020MS002149


Expanding the frontiers of seasonal extreme temperature 
prediction
● SPEAR seasonal predictions demonstrate the potential to 

predict extreme temperature frequency up to 9 months in 
advance (Jia et al. 2022, 2023, 2024).
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SPEAR forecast skill of JJA heat extremes

Forecast skill (ACC) 
of summertime 
extreme heat 
occurrences in 
SPEAR at a lead of 9 
months. Stippling 
indicates statistically 
significant skill. From 
Jia et al. (2022). 

Jia et al. (2022) highlighted in Nature

● SPEAR seasonal predictions are being applied to a prototype 
system for real-time U.S. extreme heat attribution (Barsugli 
et al. 2022; Schreck et al 2024). SPEAR forecast skill of 

DJF temperature swings

● Broadening the view of extremes: Novel demonstration that 
wintertime subseasonal “temperature swings” more 
predictable than seasonal mean temperature over much of 
CONUS (Yang et al. 2022).

Forecast skill (ACC) 
of wintertime 
temperature swings  
in SPEAR for a 1 Dec 
initialization. From 
Yang et al. (2022).

R4: Increase engagement with other NOAA efforts

https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0364.1.xml
https://link.springer.com/article/10.1007/s00382-022-06655-w
https://doi.org/10.1038/s41612-024-00723-0
https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0364.1.xml
https://www.nature.com/articles/d41586-022-00956-0
https://doi.org/10.1175/BAMS-D-21-0237.1
https://doi.org/10.1175/BAMS-D-21-0237.1
https://iopscience.iop.org/article/10.1088/2752-5295/ad8028/meta
https://www.frontiersin.org/journals/climate/articles/10.3389/fclim.2022.972119/full
https://www.frontiersin.org/journals/climate/articles/10.3389/fclim.2022.972119/full


Advancing our ability to anticipate too little or too much 
water through atmospheric river predictability research 

● Seasonal atmospheric river activity can 
be predicted with skill to 9 months over 
western North America in SPEAR (Tseng 
et al. 2021; Clark et al., in revision).

● This capability is being transitioned to the 
National Weather Service as a tool for 
operational forecast guidance through a 
project funded through the Weather 
Program Office.

6

(Left) SPEAR forecast skill (ACC) of Jan - Mar atmospheric river (AR) 
frequency at a lead of 8 months. (Right) AR frequency forecast skill over 
coastal California as a function of initialization month (x-axis) and target 
season (y-axis). Triangles indicate statistically significant skill. From Tseng et 
al. (2021). 

R4: Increase engagement with other NOAA efforts

https://doi.org/10.1029/2021GL094000
https://doi.org/10.1029/2021GL094000
https://wpo.noaa.gov/climate-testbed-awards/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL094000
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL094000


Accelerating progress in the seasonal prediction of high-impact 
extreme weather 
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❏ Seasonal tropical cyclone predictions on regional 
scales (Murakami et al., under revision)

❏ North Pacific atmospheric blocking (Park et al. 2024)
❏ Springtime CONUS tornado activity (Tseng et al., in 

prep.)
❏ Summertime East/Japan Sea surface temperature, 

including marine heatwaves (Joh et al. 2024)

Additional studies demonstrating skillful seasonal predictions 
with SPEAR that have the potential to advance early warning 
systems for extreme weather: 

Skill of DJF North Pacific blocking

Skill DJF blocking (lead of 3 months)

(Top) Dec - Feb atmospheric blocking skill (rank 
correlation) at a lead of 3 months from a hybrid 
dynamical-statistical model with SPEAR. (Bottom) North 
Pacific blocking skill (Pearson correlation) as a function 
of initialization month.  From Park et al. (2024).

https://www.nature.com/articles/s41612-024-00767-2
https://www.nature.com/articles/s41612-024-00754-7
https://www.nature.com/articles/s41612-024-00767-2
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Translating SPEAR seasonal forecasts into industry-relevant 
products 

Prediction Skill for Wind Energy

SPEAR forecast skill (ACC) of (left) Dec - Feb and (right) 
Mar - May wind energy for a 1 Nov and 1 Feb initialization, 
respectively. From Yang et al. (2023).

● Skillful seasonal predictions of wind speed 
translated to wind energy forecasts that are 
potentially useful for the energy sector (Yang et 
al. 2023).

● Storm track variations associated with ENSO the 
primary source of skill.

● High skill for major wind energy 
producing regions of the central 
U.S.

Texas
Time series of observed 
(black) and SPEAR (red) 
Mar - May wind power 
averaged over Texas for a 1 
Mar initialization.  From 
Yang et al. (2023).

https://www.nature.com/articles/s43247-024-01457-w
https://www.nature.com/articles/s43247-024-01457-w
https://www.nature.com/articles/s43247-024-01457-w
https://www.nature.com/articles/s43247-024-01457-w


                  Decadal Prediction system with SPEAR
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■ Decadal system is initialized from SPEAR 
global reanalysis (Atmosphere components 
and SST were constrained by observations, 
Ocean component is a free ocean) (Yang et al. 
2021, JAMES).

■ The AMOC in SPEAR reanalysis is well 
constrained by observation. 
GFDL sends decadal predictions to WMO 
(Leon et al., 2022, BAMS)
GFDL participates in VolRes-RE 
(Sospedra-Alfonso et al., 2024, BAMS) 
Decadal predictions drive high resolution 
regional ocean models (Vimal et al. 2024, GRL)

AMOC time series in SPEAR reanalysis and observation

❏ Relevance: Supports NOAA’s mission to address 
decadal prediction of societally-relevant quantities. 

❏ Quality & Performance: Outputs include policy 
implications and international collaboration. 

R3: Be ready to reach out to outside entities

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002529
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002529
https://journals.ametsoc.org/view/journals/bams/103/4/BAMS-D-20-0311.1.xml
https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-23-0111.1/BAMS-D-23-0111.1.xml
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL110946


Understanding sea level mechanisms leads to predictive skill
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Coastal sea level prediction skillPredictable sea level pattern in SPEAR control run

Coastal skill comes from external 
radiative forcing and AMOC

Year

Trend skill

detrended skill

Sea level has multi-year 
predictability in control 
run, arising from 
multidecadal AMOC 
fluctuations(Zhang et al. 
2024, Nature Comm. Earth 
& enviro;Gu et al. 2024, npj 
Clim. & Atm. Science )

❏ Quality: Addresses NOAA’s priority to reduce flood risks through 
innovative AI methods and predictive modeling.

❏ Relevance: Supports NOAA’s mission to manage too little or too 
much water. 

 

R4: Increase engagement with other NOAA efforts 

https://www.nature.com/articles/s43247-023-01093-w
https://www.nature.com/articles/s43247-023-01093-w
https://www.nature.com/articles/s43247-023-01093-w
https://www.nature.com/articles/s41612-024-00802-2
https://www.nature.com/articles/s41612-024-00802-2


  Flood frequency prediction along U.S.Northeast Coast (USNEC)
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■ Observed multidecadal fluctuations in 
sea levels along USNEC are driven by 
AMOC. 

■ Background sea level modulates flood 
frequency and serves as a source of 
multiyear predictability.
(Zhang et al Science Advances in review)

Skill of USNEC flood frequency 

❏ Relevance: Addresses NOAA’s priority to predict flood risks through 
high resolution modeling.

❏ Performance: Leveraging cutting-edge tools (downscaled system 
Vimal et al. 2024, GRL) for accurate and actionable coastal prediction. 

Time series of the AMOC and sea level along the USNEC 

R1: Strengthen internal collaboration within GFDL/Princeton

https://www.noaa.gov/sites/default/files/2022-12/NOAA-FY23-27-Weather-Water-Climate-Strategy-FINAL-v3.pdf
https://www.noaa.gov/sites/default/files/2022-12/NOAA-FY23-27-Weather-Water-Climate-Strategy-FINAL-v3.pdf
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL110946


Rapid acceleration of flooding along U.S.Southeast Coast(USSEC)
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■ Accelerated SLR and floods after 2010: compounding 
effects of radiative forcing, AMOC (5-yr skill) and 
wind-driven tripole-like response to North Atlantic 
Oscillation (2-yr skill) (Zhang et al. 2024, npj Clim. & Atm. 
Science, interviewed by Washington post and CNN).

Annual mean sea level rise(SLR) along USSEC Increased flood frequency along USSEC after 2010

❏ Relevance: Addresses NOAA’s priority to reduce flood risks 
through predictive modeling.

https://www.nature.com/articles/s41612-024-00670-w
https://www.nature.com/articles/s41612-024-00670-w
https://www.washingtonpost.com/climate-environment/interactive/2024/us-south-sea-level-rise-climate-change/?itid=hp-top-table-main_p001_f012
https://www.noaa.gov/sites/default/files/2022-12/NOAA-FY23-27-Weather-Water-Climate-Strategy-FINAL-v3.pdf
https://www.noaa.gov/sites/default/files/2022-12/NOAA-FY23-27-Weather-Water-Climate-Strategy-FINAL-v3.pdf


Southern Ocean multidecadal variability and Antarctic sea ice

13

Monthly Antarctic sea ice extent (SIE) time series

Sea ice decreasing trend in 2016-2023
■ Persistent negative Antarctic SIE anomalies after 2016:  

Subsurface Southern Ocean warming plays a crucial role (~50%) in 
SIE lows, as a multiyear predictability source. (Zhang et al. 2023 
Comm. Earth & Enviro.; Quoted by New York times; Washington Post; 
E&E news…)

■ Observed positive Antarctic SIE 
(cold SST) trend in 1979-2015: 
Natural variability of Southern ocean 
convection as a driver of observed 
trends, potentially predictable. (Zhang et 
al. 2019, Nature Clim. Change; JC 2021, 
2022, 2023; Quoted by Carbon Brief)(Clare et al. 2021)

❏ Relevance: Advances understanding of climate-driven extreme 
weather, aiding NOAA’s efforts to enhance climate resilience. 

https://www.nature.com/articles/s43247-022-00624-1
https://www.nature.com/articles/s43247-022-00624-1
https://www.nytimes.com/2023/08/02/climate/antarctic-sea-ice-record-low.html?unlocked_article_code=lUXW26_hv-hA65lI0BqY01kZB4XzHeSNEPcTqAPd-ELeYlbxas65Hfks1HFgiue9gqGIMZgejfjSzwEZKV82skA1_TuSMV4R4mDJPKLFT3sg1Rm7h4gwf_Sx2EyBQrhfn7TWPGf9qj1PL2sJ1uWdze0SsM7s6vAmFWGJ68oW43UyGIp6zQNxCj-CXgIjs5jBORLwBPu6okVEJWwV4gQUUIb4lcH-NePeaagmU3d5HcBFtFrfYK6NinDgGmE0WAzuqtGF7vy7l-uBCpoCuVDqXKjXREhkhyutkAwVqQoAqYcII9Mr8KS0TTVlZJRKXyOXpPmXb6xp3hgbM2IeBVf39RQintJ5VQ&smid=url-share
https://www.washingtonpost.com/climate-environment/2023/02/14/antarctic-sea-ice-record-low/
https://www.scientificamerican.com/article/antarctic-sea-ice-hits-a-record-low-but-role-of-warming-is-unclear/
https://www.nature.com/articles/s41558-018-0350-3
https://www.nature.com/articles/s41558-018-0350-3
https://journals.ametsoc.org/view/journals/clim/34/3/JCLI-D-20-0049.1.xml
https://journals.ametsoc.org/view/journals/clim/35/5/JCLI-D-21-0466.1.xml
https://iopscience.iop.org/article/10.1088/2515-7620/acb90e
https://www.carbonbrief.org/natural-ocean-fluctuations-help-explain-antarctic-sea-ice-changes/
https://www.noaa.gov/organization/budget-finance-performance/value-to-society/noaa-fy22-26-strategic-plan?utm_source=chatgpt.com


             North Pacific decadal variability and predictability
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■ Substantial increase in the decadal variance of KOE 
SSH variability in a warmer climate (Joh et al. 2022 npj 
Clim. & Atm. Science). Also Pacific Decadal Oscillation 
time scale change (Zhang and Delworth, 2016 JC). 

■ Sea surface height (SSH) over 
Kuroshio-Oyashio Extension (KOE) 
has a 5-yr prediction skill (Joh et al. 
2022, JC) due to Rossby wave.

Significant 
multiyear skill 
for decadal KOE 
SSH prediction

❏ Quality: Utilizing unique SPEAR large-ensemble simulations 
to evaluate future changes of North Pacific quantities.

Multi-year Skill of SSH over the KOE 

https://www.nature.com/articles/s41612-022-00285-z
https://www.nature.com/articles/s41612-022-00285-z
https://journals.ametsoc.org/view/journals/clim/29/16/jcli-d-15-0690.1.xml
https://journals.ametsoc.org/view/journals/clim/35/11/JCLI-D-21-0471.1.xml
https://journals.ametsoc.org/view/journals/clim/35/11/JCLI-D-21-0471.1.xml


Climate change has impacted the global distribution of tropical 
cyclones

Key Finding: Regional changes in tropical cyclone activity since 1980 have been detected and 
attributed to external forcings, such as greenhouse gases and aerosols.
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Relevance: Advances understanding of climate-driven extreme weather, aiding NOAA’s efforts to 
enhance climate resilience. Addresses a key public question: How is climate change affecting 
tropical cyclones? (CNN News, AP, New York Times) 

Quality: Highly cited peer review publications: PNAS, Sci. Adv., npj Clim. Atmos. Sci., GRL

SPEAR simulations (1980–2018, right) show TC trends 
driven by external forcing (e.g., greenhouse gases, 
aerosols), aligning with observed patterns (left).

https://www.noaa.gov/organization/budget-finance-performance/value-to-society/noaa-fy22-26-strategic-plan?utm_source=chatgpt.com
https://www.noaa.gov/organization/budget-finance-performance/value-to-society/noaa-fy22-26-strategic-plan?utm_source=chatgpt.com
https://www.cnn.com/2022/05/11/us/air-pollution-atlantic-hurricanes-climate/index.html
https://apnews.com/article/climate-storms-science-air-pollution-united-states-a629da4d72fa94d75f6668acd5a04bf3
https://www.nytimes.com/2022/05/11/climate/air-pollution-hurricanes.html
http://dx.doi.org/10.1073/pnas.1922500117
http://dx.doi.org/10.1126/sciadv.abn9493
http://dx.doi.org/10.1038/s41612-023-00516-x
http://dx.doi.org/10.1029/2024GL110443


Quantifying future risks of tropical cyclones
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Quality: High-resolution models (e.g., SPEAR_HI) ensure robust projections for extreme events.
Relevance: Supports NOAA’s goal to protect lives and property from extreme weather.
Performance: Collaborates with AOML, Princeton University, Lamont-Doherty Earth Observatory,  
                         JAMSTEC, and MRI 

Future change in major 
hurricane occurrence, 
showing increasing 
major hurricanes and 
associated increases in 
wildfires in the Central 
Pacific

● Reducing gaps in global TC frequency projections 
(Vecchi et al. 2019, Clim. Dyn., Murakami et al. 2020 PNAS)

● Rising threat of rapid intensification                  
(Bhatia et al. 2022, Nat. Comm.)

● Examining evolving extratropical transition         
(Bieli et al. 2020, JAMES)

● Projected intensified TC rainfall                           
(Jong et al. 2024, Earth’s Future)

● Assessing risks from slower-moving TCs           
(Zhang et al. 2020, Sci. Adv.)

 

● Increasing events of rare rainfall pattern caused by 
tropical cyclones (Murakami et al. 2022, Earth’s Future)

● Compound risks of major hurricanes and wildfire 
(Murakami et al. 2024, Commun. Earth Environ.)

R1: Strengthen internal collaboration within GFDL/Princeton
R4: Increase engagement with other NOAA efforts

http://dx.doi.org/10.1007/s00382-019-04913-y
http://dx.doi.org/10.1073/pnas.1922500117
http://dx.doi.org/10.1038/s41467-022-34321-6
http://dx.doi.org/10.1029/2019MS001878
http://dx.doi.org/10.1029/2023EF004370
http://dx.doi.org/10.1126/sciadv.aaz7610
http://dx.doi.org/10.1029/2021EF002481
http://dx.doi.org/10.1038/s43247-024-01644-9


Quantifying risk of extreme rainfall events in the future
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Global increase in atmospheric rivers with anthropogenic 
impacts emerging by 2040 in Northwest and Northeast US

Fall extreme precipitation over Northeastern US
25-km SPEAR

50-km SPEAR

100-km SPEAR

SPEAR_HI projects sixfold increase in 
Northeastern U.S. extreme precipitation by 2100, 
emphasizing infrastructure resilience

Tseng et al. 2022, J. Geophys. Res.

Jong et al. 2023, npj Clim. Atmos. Sci.; 2024, Earth’s Future

Relevance: Addresses NOAA’s priority to reduce flood risks through predictive modeling
Performance: Leveraging cutting-edge tools (SPEAR_HI) for accurate and actionable projections

http://dx.doi.org/10.1029/2021JD036044
http://dx.doi.org/10.1038/s41612-023-00347-w
http://dx.doi.org/10.1029/2023EF004370
https://www.noaa.gov/sites/default/files/2022-12/NOAA-FY23-27-Weather-Water-Climate-Strategy-FINAL-v3.pdf


Quantifying future changes in extreme heat and cold over the US

● Rising frequency of extreme heat events over CONUS 
(McHugh et al. 2022, Earth’s Future)

● Compound heat and humidity events affecting human health 
and ecosystems (Jia et al. 2024, npj Clim. Atmos. Sci. )

● Increasing risk of Alaskan summer heat extremes (Weidman 
et al. 2021, Earth’s Future)
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Extreme Heat Extreme Cold

● Stationary waves weaken under high emissions, 
reducing cold extremes

● Wave shifts alter North American climate patterns. 
(Park et al. 2024, Nat. Comm.)

Quality: Utilizing unique SPEAR high-resolution large-ensemble simulations to evaluate future 
changes in extreme temperature events
Relevance: Supports NOAA’s mission to address societal impacts of heat/cold extremes.

Red: decreasing frequency

https://doi.org/10.1029/2023EF003954
https://doi.org/10.1038/s41612-024-00723-0
https://doi.org/10.1029/2021EF002163
https://doi.org/10.1029/2021EF002163
https://doi.org/10.1038/s41467-024-51601-5


Advancing climate research with AI: Enhancing predictions 
and detecting anthropogenic signals
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● Use neural networks to identify the emergence timing 
of U.S. summertime temperatures (figure)

            Labe et al. 2024, Earth’s Future
● Neural networks with the SPEAR large ensemble 

extract spatial distribution patterns of temperature 
and precipitation related to climate change

            Murakami et al. 2022, Earth’s Future, Labe et al. 2024, JGR

Quality: Employing innovative AI methods and SPEAR climate simulations to push the 
boundaries of climate research, exploring robust and actionable insights.
Relevance: Explainable AI provides critical insights for mitigation strategies and demonstrates 
potential for near real-time observation tracking, directly supporting NOAA’s mission.

Neural networks detect U.S. summertime temperature 
emergence (left) and key prediction areas (right)

https://doi.org/10.1029/2023EF003981
http://dx.doi.org/10.1029/2021EF002481
https://doi.org/10.1029/2024JH000327


Key research advancing understanding of climate variability 
and impacts on societal resilience

● Variability in the Northwestern Pacific and implications for ENSO teleconnections. (Joh et al. 2023, 2024)
● AMOC reversibility and its impact on Mediterranean precipitation patterns. (Delworth et al. 2022)
● Western U.S. snow droughts and transitions to no-snow conditions by 2100. (Schmitt et al. 2024)
● Increasing risk of another Cape Town “Day Zero” event. (Pascale et al. 2020)
● SST variability drives vapor pressure deficit changes in the southwestern U.S. (Lou et al. under review)
● Advancing ENSO diagnostics to improve understanding of ENSO’s mechanisms. (Johnson et al. 2022)
● Central American drought trends under anthropogenic climate change. (Pascale et al. 2021)
● Late 21st-century climate mitigation reduces ocean heat uptake, with the Southern Ocean as the main 

heat exchanger. (Li et al. 2024)
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● Relevance: Each study aligns with NOAA’s mission to address climate variability and societal 
resilience.

● Quality & Performance: Outputs include actionable insights, policy implications, and 
international collaboration.

https://doi.org/10.1038/s41612-023-00453-9
https://doi.org/10.1038/s41612-024-00754-7
https://doi.org/10.1073/pnas.2116655119
https://doi.org/10.1029/2023JD039754
https://www.pnas.org/doi/10.1073/pnas.2009144117
https://doi.org/10.3389/fclim.2022.941055
https://link.springer.com/article/10.1007/s10584-021-03228-4
https://doi.org/10.1038/s43247-024-01849-y


Summary of Achievements, Gaps, and Frontiers
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Achievements:
● Publications bridging robust science and practical societal applications through SPEAR predictions 

and projections (Selected publications from 2020 to 2024 -> Link).
● Contributions to society, including initiatives for NMME and SPEAR Large Ensemble, supporting 

societal resilience and providing data for decision-making.
Gaps:
● Persistent model biases in Tropical Pacific warm pool rainfall, trade winds, and cold tongue.
● Systematic errors in ENSO, Pacific decadal trends, and the Central U.S. “warming hole.”
Frontiers:
● Advancing AI/ML for climate predictions.
● Exploring high-resolution modeling for extremes and air-sea interactions.
● Strengthening links between predictions and societal impacts (e.g., landfalling TCs, flood risks).
● Enhancing high-resolution predictions capabilities and improving data assimilation/initialization 

processes.
● Investigating climate reversibility and its implications for reversing human-induced change and long-term 

sustainability.

https://www.gfdl.noaa.gov/wp-content/uploads/2025/01/Seasonal-Decadal-Selected-Publications-2020-2024.pdf

