Earth System Interactions and Processes:
Understanding, Predictions and Projections

John Dunne

Q2: Concerning NOAA's key mission element of understanding, predicting, and projecting
changes in the Earth System, how can GFDL drive further advances in these areas, including
extremes and environmental hazards, through scientific innovation based on observations,
theory, and modeling? Where are the strengths, gaps, and new frontiers?
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GFDL models the complex Earth system representing fundamental

processes and interactions, including contributions from across the

lab for GFDL-ESM4.1

Dunne, Horowitz, Adcroft, Ginoux,
Held, John, Krasting, Malyshev, Naik,
Paulot, Shevliakova, Stock, Zadeh,
Balaji, Blanton, Dunne, Dupuis,
Durachta, Dussin, Gauthier, Griffies,
Guo, Hallberg, Harrison, He, Hurlin,
McHugh, Menzel, Milly, Nikonov,
Paynter, Ploshay, Radhakrishnan,

Rand, Reichl, Robinson, Schwarzkopf,

Sentman, Underwood, Vahlenkamp,
Winton, Wittenberg, Wyman, Zeng,
Zhao (2020, GMD)
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The best performing model, GFDL-ESM4, has about 4 times more influence
than it would have without weighting” Brunner et al., ESD, 2020)

Contributions to IPCC Multimodel Assessment include Historical climate and Scenario Projections of
temp., precip., overturning and sea level rise; Estimation of Transient Climate Response, Equilibrium
Climate Sensitivity, Transient Climate Response to cumulative Emissions, Zero Emission Commitment,
Remaining Carbon budgets; Changing Short-Lived Climate Forcers (SLCFs) and overall radiative forcing

Lead author: Lee, J-Y, J Marotzke, G Bala, L Cao, S Corti, J P Dunne, et al., 2021: Future Global Climate: Scenario-based
Projections and Near-term Information In Climate Change 2021: The Physical Science Basis. Contribution of Working Group | to

the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 553-672,
doi:10.1017/9781009157896.006553-672.

Coordinating lead author: Szopa, S., V. Naik, et al. 2021: Short-Lived Climate Forcers. In Climate Change 2021: The
Physical Science Basis. Contribution of Working Group | to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press,, pp. 817-922, doi: 10.1017/9781009157896.008.

See prerequmte slides on GFDL's participation in Assessments and MIPs for more information
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Past and Future Increase in North

American Wildfire

ESM4.1 identified an increased risk of fires in Alaska
from a climate-mediated increase in fuel Statistically
significant difference during 2003-2019
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The grey circles represent percentile of 2019-like
event in 17-year window and likelihood that the
2019 extreme event falls outside of the historical
statlstlcal distribution. (Y. Yu, et al., 2021, BAMS)
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North American wildfire impacts on air quality extremes
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Aug-Sep mean PM, 5 (ug/m3) in Pacific Northwest
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Projected scenarios suggest Pacific Northwest
wildfire smoke may triple in a warming climate;
2020/2023 new norm (Xie et al., 2022, PNAS)
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Forecast Lead Time (mon)

Ocean Blogeochemical
Predictability and Prediction
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Chlorophyll

Chlorophyll

Park et al., 2019, Seasonal to multiannual
marine ecosystem prediction with a global
Earth system model, Science

A Trop Pacific

—©— Obs | _® — Predict (APR_init 9—11 mon lead)
2 La La La
1 -
0 -
_1 -
_2 -
_3 o
R=0.88
1995 2000 2005 2010 2015
B Indian Ocean
" —&— Obs —® — Predict (APR_init ng—13 mon lead)
5 ) La L
1 =
O l
_1 4
_2 o
—3- R=0.72
1995 2000 2005 2010 2015

5-YEAR REVIEW
JANUARY 28-30, 2025

5



Representation of post-El Nino Chlorophyll Rebound

Reg. NDJ NIN03.4 to CHL [shade,mg/m’/°C] and SST [contour,°C/*C]
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The observed post-El Nifio chlorophyll anomaly,
“chlorophyll rebound,” in the equatorial Pacific is
successfully simulated in GFDL-ESM4.1

JIA(0)

D(0)JF(+1)

This rebound is primarily driven by surfacing high

iron anomalies propagated from western Pacific via - - Jrw] ¢ <o
Equatorial Undercurrent & A el T
S10S T S——_ & > 1os-§,_. ...... —

140E _160E 180 160W 140 120N 100K 8OW 140E 160E 180 160W 140N 1200 100N 80K

. . G
Contrary to previous theory, this Ch|0r0phy|| rebound -0.06 -0.048 -0.036 —0.024 -0.012 0  0.012 0.024 0.036 0.048 0.06
does not depend on La Nifia following EI Nifio. w Eswet i )t il

Lim et al., Oceanic and Atmospheric Drivers of
Post-EI-Nifio Chlorophyll Rebound in the Equatorial
Pacific. Geophysical Research Letters, 49, 5, 2022,
DOI:10.1029/2021GL096113
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Past and future of nitrogen pollution from land to oceans ( LM3-TAN)
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Carbon uptake under lron Fertilization largely compensated
outside the Southern Ocean

Additional Carbon Uptake by Fertilization
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Understanding and attributing changes in SLCFs for improved

predictions of AQ and Climate responses

CH, emission-driven AM4 is able to capture observed methane

latitudinal variation, trend, and variability

Annual Mean (1983- 2017) $isfes=51

CH,@ 997.95mb
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also see Stevenson etal. (2020), He et al (2021), and Chua et al. (2023) for attribution of trends in hydroxy/ sink for methane




Quantifying the environmental implications of an “H, economy”

ESM4.1 represents the impact of H, oxidation on CH, lifetime, 0,, and stratospheric water

o H, ERF (Paulot et al., IUHE, 2021 Chua et al., in prep) and H, GWP (Sand et al., CEE, 2023) - collaboration with CICERO
e H, and AQ (Chua et al,, in prep)
e H,-CH, coupling (Bertagnl et al., Nature Com, 2022)) - collaboration with Princeton University
° Cllmate implications of greater H, usage (Hauglustaine et al., CEE, 2022) - collaboration with IPSL
T mmn.owwmm
| et S e H,GWP (indirect) is ~12
s oo inth srstpher (2-3x greater than assessments)
STRATOSPHERE I ﬁ';"f “’,@;",
TROPOSPHERE T Aaemnrpiro b e  Green H, offers clear benefits in
p [ 5o R —— terms of radiative forcing. H,
w “ﬁ__ .. produced using CH, (grey/blue) is
II.I'II R i HHHHHHH much less advantageous from a
f“";u;,;«yy SESEREES 7 o Vess o radiative standpoint
af(’f H2 +'OH > H'* HZO NO+RO, NO,#R0 | Incressed caone Need f dd | h
e RTRIME  — ° eed for additional research on
land sink/natural sources

Sand et al. (2023) Fabien Paulot, Glen Chua
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GFDL-ESM Representation of Natural and Human Stratospheric Aerosol Injection
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e Important to assess response to:
o Volcanic eruptions such as
Pinatubo (Gao et al., 2023)
o Climate intervention strategies
(see also Mahfouz et al., 2023)
e Highlight the need for improved LDt

aerosol Process representation Month
Comparison of observed (black) Aerosol Optical Depth (AOD) with
GFDL AM4.1 simulations with different assumptions of sulfur
dioxide emissions amount & injection altitude, and aerosol particle
size for the Mt. Pinatubo eruption (Gao et al., JAMES 2023)
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022MS003532
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022MS003532
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL102340

GFDL-ESM4.5 in Coupled Model Intercomparison Project Phase 7

Prediction & Projection
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GFDL's Next Generation ESM4.5: “Fast Track” supporting IPCC/AR7 Science and Service

A.

Historical Earth System Changes: Faithfully
represent historical climate change, CO,
responses and chemistry-climate interactions
driven by emissions to assess changes in the
Earth System.

Climate Risks and Tipping Points: Determine
risks associated with stabilization at various
global warming levels, including the likelihood of
a wide range of tipping points (e.g. TIPMIP).
Climate-Ecosystem Interactions: Evaluate
implications of too much or too little water for
managed and unmanaged ecosystems,
including at the sub-grid stakeholder relevant
scale.

Climate Mitigation and Intervention: Evaluate
the viability and implications of climate change
mitigation strategies including climate
intervention techniques (e.g., CDR, SRM).
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(Merge recent GFDL successes in climate and Earth system fidelity; )
Snow-dust-albedo interactions and snow physics improvements;
Improved surface turbulent exchanges, Sea salt emissions;

\. Reproduce historical temperature and CO, record. Y,
Global coastal/shelf/slope marine ecosystems with expanded B
biodiversity and improved physiology and chemistry; Land
management complexity; Improved soil carbon-microbial

\_interactions and processes. Y,

~N
Interactive fire emissions; Sub-grid hydrological heterogeneity;
Treeline parameterization for high latitudes and altitudes; Next

\generation soil microbial carbon representation .

4 )
Improved representation of plant biogeography and land and ocean
carbon sinks; Improvements to natural and anthropogenic aerosol
and chemistry interactions; Applications with CO, emissions and

\_ removal forcing. )
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GFDL-ESM4 Addresses OAR Societal Challenges
Confronting Challenges from our Changing Climate

« Understanding past and projecting future climate and Earth System evolution
« ESM4 applications to coupled carbon-chemistry-climate, including emission projections and
climate mitigation options

Protecting against extreme weather events and environmental hazards

» Application of regional refinement to atmospheric composition and air quality
» Fire, dust, SO,, ozone, and air quality modeling under compound extremes (e.g., heat/drought)
« Eutrophication modeling

Managing too much and too little water
« Vegetation and hydrology modeling for drought and flood

Sustaining a healthy environment and economy

« Characterizing environmental change and impacts including air/water quality and acidification
« Supporting climate services of regional downscaling and impacts studies

‘0
£
H e
g :
:
am é)

5-YEAR REVIEW
JANUARY 28-30, 2025 14

2 GEOPHYSICAL FLUID
& DYNAMICS LABORATORY




