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Key Points:  12 
● The 2019 and 2022 droughts caused marked reductions in photosynthetic activity and ozone uptake 13 

by vegetation in China.  14 
● This worsened air pollution extremes, leading to a threefold increase in high-ozone events over 100 15 

ppbv.  16 
● The linkage to soil moisture droughts can be exploited to improve ozone forecasts for public health 17 

warnings.  18 
 19 
Abstract: Using a decade of observations and chemistry-climate model simulations (2014-2023), we 20 
highlight the key role of biosphere-atmosphere interactions in driving late summer–autumn ozone 21 
pollution extremes over Southeast China during hot droughts. In the 2019 and 2022 droughts, stomatal 22 
closure in the Yangtze River Basin, caused by soil moisture deficits, led to ~60% reductions in ozone 23 
deposition rates to vegetation, aligned with reduced photosynthesis inferred from satellite remote sensing 24 
of solar induced fluorescence. Ozone production increased due to higher isoprene emissions from heat 25 
stress, NOx-rich airflow from North China, and enhanced solar radiation. Soil drought also intensified 26 
temperatures and increased isoprene emissions (+27%), but had minimal impact on ozone (< 5 ppbv) in 27 
South China, where ozone formation is NOx-limited. Reduced ozone uptake by drought-stressed 28 
vegetation played a dominant role, driving 10–20 ppbv increases in daily maximum 8-h average ozone 29 
concentrations and a threefold rise in events exceeding 100 ppbv.  30 
 31 
Plain Language Summary: Ozone pollution is a major problem in China, affecting both health and 32 
the environment. This study shows that the worst ozone pollution in Southeast China is linked to 33 
droughts and heatwaves in late summer and autumn. When plants experience soil moisture drought, 34 
they close small pores in their leaves to save water, which reduces their ability to absorb ozone, 35 
causing higher ozone levels in the air. During the record-setting droughts of 2019 and 2022, the lack of 36 
ozone uptake by stressed plants led to a threefold rise in high-ozone events over 100 ppbv,  which is 37 
well above China’s air quality limit of 80 ppbv. This significant impact of drought on ozone air quality 38 
was unknown in the region before and is important to understand as droughts and heatwaves may 39 
become more common in a warming climate.  Recognizing the link to soil moisture drought can 40 
improve ozone forecasts and help with public health warnings.  41 
 42 
1. Introduction 43 

High concentrations of ozone in surface air are hazardous to human lungs and have been blamed for tens 44 
of billions of dollars in annual agricultural loss in China [e.g., Feng et al., 2022; Mao et al., 2024]. 45 
Transport of Asian ozone pollution contributed to increases in western US background ozone during the 46 
1980s-2000s [e.g., Lin et al., 2012; 2015; 2017; Jaffe et al., 2018]. Over the past decade, substantial 47 
effort has been invested in controlling emissions of SO2, NOx, and carbonaceous aerosols with the aim 48 
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of reducing PM2.5 levels in China [Zhang et al., 2019]. The nationwide monitoring network reveals 49 
marked improvements in PM2.5 air quality since 2014, however, severe ozone pollution persists in China 50 
despite NOx emission controls [Wang et al., 2017; Lu et al., 2018]. A number of studies have examined 51 
the influence of heterogeneous chemistry, ozone production regimes, heatwaves, and the temperature-52 
driven biogenic emissions [e.g., Li et al., 2019, 2020; Ma et al., 2019; Liu et al., 2021; Wang N. et al., 53 
2022; Wang P. et al., 2022]. Little is known about the role of compound drought and heat events (also 54 
termed hot droughts), which may become more prevalent in the context of global warming [e.g., 55 
Trenberth et al., 2014].  56 
 57 
When plants are under drought stress, leaf stomata close to prevent water loss, inhibiting photosynthesis 58 
and limiting the uptake of ozone by vegetation (an important component of dry deposition) [Lin et al., 59 
2019; Clifton et al., 2020]. The impact of drought-induced reductions in ozone removal is less studied 60 
compared to isoprene-induced ozone production, partly because the commonly used Wesely [1989] dry 61 
deposition scheme does not account for stomatal closure caused by soil drying (see Lin et al. [2019] for 62 
a review). Reductions in ozone removal by vegetation, caused by more frequent hot droughts, have been 63 
identified as a major climate penalty feedback that contributes to the persistence of surface ozone 64 
pollution over Europe in recent decades, according to new observations and models [Lin et al., 2020]. 65 
Limitation in ozone uptake by vegetation has also been reported for severe droughts in the US [e.g., 66 
Huang et al., 2016, Lin et al., 2017; Lin et al., 2019]. The Yangtze River Basin, home to over 400 million 67 
people in China, experienced a number of droughts in recent years, including the record-setting hot 68 
droughts of 2019 and 2022 [Chen et al., 2023; Liu and Zhou 2021; Liu et al., 2023; Ma et al., 2022]. 69 
Severe ozone pollution, above one standard deviation in the 10-year observational record, was measured 70 
across eastern China during late summer–fall of 2019 and 2022 (Fig.1 and Fig.S1).  71 
 72 
Here we probe the underlying mechanisms driving the observed ozone extremes during hot droughts in 73 
China.  In contrast to the North China Plain where surface ozone peaks seasonally in late spring–early 74 
summer (June), ozone pollution in the Yangtze Plain and the Pearl River Basin over Southeast China 75 
peaks in late summer–fall (September) (Fig.S1). During June–August, Southeast China experiences 76 
lower ozone as a consequence of increased cloudiness from the East Asian Summer Monsoon and the 77 
monsoonal intrusion of low-ozone air from the tropical Pacific [Liu et al., 2002; Wang et al., 2008; Lin 78 
et al., 2009; Wang W. et al, 2022]. Southeast China also features a wide coverage of forest ecosystems, 79 
providing favorable conditions for biosphere-atmosphere interactions. Using a suite of observations and 80 
chemistry-climate model simulations, we assess the contributions from land-atmosphere coupling, 81 
changes in ozone removal by vegetation, biogenic isoprene emissions and their interactions with 82 
anthropogenic NOx for ozone production. 83 
 84 
2. Methods: Observations and Model Simulations 85 
We calculate maximum daily 8-h average  ozone (MDA8 O3) concentrations using hourly 86 
measurements during 2014–2023 from China’s national air quality monitoring network (Text S1). To 87 
investigate correlations between ozone and hot drought, we use version 4.08 of the Climate Research 88 
Unit (CRU) monthly 0.5ox0.5o gridded daily maximum 2 m temperature (Tmax) [Harris et al. 2020] and 89 
version 2.10 of the Standardized Precipitation Evapotranspiration Index (SPEI) database [Begueria et 90 
al., 2014]. SPEI is a multiscalar drought index considering the combined effects of precipitation and 91 
temperature; in this study we use SPEI02 that integrates water status over the preceding two months. 92 
We also analyze 500 hPa geopotential heights, 850 hPa winds, and surface downward shortwave 93 
radiation from the ERA-5 monthly mean reanalysis. 94 
 95 
To investigate changes in vegetation after exposure to drought, we analyze satellite remote sensing of 96 
Solar Induced Fluorescence (SIF), a measurement of the small amounts of radiation emitted by 97 
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chlorophyll in plants during photosynthesis [Helm et al., 2020; Guanter et al., 2021; Chen et al., 98 
2022]. To examine anomalies in isoprene emissions from vegetation, we analyze tropospheric column 99 
densities of formaldehyde (!HCHO), a high-yield isoprene oxidation product [Palmer et al., 2003; 100 
Millet et al., 2008; Zheng et al., 2017]. Both !HCHO and SIF have been retrieved from the 101 
TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5P  satellite 102 
since 2018 [De Smedt et al., 2021; Guanter et al., 2021]. We also use the weekly Vegetation Health 103 
Index (VHI) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the 104 
Suomi-NPP (2013–2020) and NOAA-20 (2021–2023) satellites (NESDIS, 2024).  105 
 106 
We conduct a set of 16-year hindcast simulations (2008–2023) with GFDL’s Atmospheric and Land 107 
Model AM4/LM4 at ~100 × 100 km2 horizontal resolution [Horowitz et al., 2020], with updates to 108 
interannually-varying anthropogenic and biomass burning emissions, atmospheric chemistry, and dry 109 
deposition schemes following Lin et al. [2024ab]. One novel feature of AM4/LM4 used here is a 110 
mechanistic simulation of ozone deposition velocities (Vd,O3) to vegetation depending on 111 
photosynthesis, soil water stress, and atmospheric CO2 concentration [Lin et al., 2019; 2020]. The 112 
limitation imposed by soil water stress is determined by the ratio of water supply from soil-root 113 
interface to the transpiration demand at non-water-limited stomatal conductance, as  simulated in our 114 
dynamic vegetation land model. Two model configurations are analyzed in this study: one with soil 115 
types and parameters taken from  LM3.0 [Milly et al., 2014; Paulot et al., 2018] and the other with soil 116 
types and parameters taken from LM4.0 [Zhao et al., 2018; Held et al., 2019; Text S2]. Through 117 
nudging to horizontal winds from the NOAA Global Forecast System, the two experiments share 118 
large-scale atmospheric circulation while simulating soil moisture, temperature, and  precipitation 119 
interactively. Both experiments capture low rainfall in September 2019 and 2022 over Southeast China 120 
but they exhibit different soil water holding capacity (Fig.S2). The LM4.0 soil configuration (hereafter 121 
AM4_wetSoil) simulates ~27% higher soil moisture levels than the LM3.0 soil configuration 122 
(hereafter AM4_drySoil) over Southeast China (Fig.S3). When soil moisture levels decrease below a 123 
critical threshold, as occurred during the 2019 and 2022 droughts in AM4_drySoil, significant stomatal 124 
closure is triggered to conserve water, limiting the intake of CO2 for photosynthesis and the stomatal 125 
uptake of O3 by vegetation. Ozone flux measurements worldwide confirm that our dry deposition 126 
scheme captures key Vd,O3 features, including spatial, seasonal, and interannual variability due to soil 127 
water stress [Lin et al., 2019]. 128 
 129 
In all simulations, biogenic isoprene emissions increase at higher solar radiation and temperature, 130 
following the Model of Emissions of Gases and Aerosols from Nature (MEGAN) [Guenther et al., 2012], 131 
with updates to land cover and emission potentials as in Lin et al. [2024a]. The implementation of 132 
MEGAN in AM4 does not include a direct dependency on soil moisture. As we will discuss later, soil 133 
dryness affects surface air temperature and therefore the temperature-driven isoprene emissions. To 134 
isolate the effects of changes in ozone removal efficiency during drought, we conduct a third simulation 135 
using the same soil configuration as AM4_drySoil but with dry deposition velocities (Vd) of ozone and 136 
other reactive gases held constant at 2018 monthly values (hereafter FIXDEPV).  137 
 138 
3. Observed correlations between hot drought and ozone pollution 139 
Using observations, we first demonstrate correlations between surface air temperature, drought, and 140 
ozone pollution in eastern China during late summer–fall (Fig.1). The observed year-to-year variability 141 
and spatial pattern of late summer ozone pollution over Southeast China show strong correlations with 142 
drought conditions, and to a lesser extent with surface air temperature. Lower ozone levels were observed 143 
during cooler and wetter conditions in September 2014, 2015, 2017, and 2018. The highest ozone 144 
concentrations were observed in the Yangtze Plain and the Pearl River Basin during the compound 145 
heatwave and drought events of September 2019 and 2022. The magnitude and spatiotemporal 146 
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persistence of late summer high-ozone pollution during these two years is unprecedented over the 10-147 
year observational record. The percentage of site-days with MDA8 O3 exceeding 80 ppbv 148 
(approximately 160 µg/m3 – the Chinese National Ozone Air Quality Standard) is 29% in 2019 and 2022, 149 
compared to 10% on average for the other years.  150 
 151 
While many recent studies have discussed ozone pollution in China being exacerbated by high 152 
temperatures (e.g., Li et al., 2020; Wang P et al., 2022; Xia et al., 2022; Wang et al., 2024), we 153 
distinguish the effects of humid versus dry heat extremes. September 2021 is an example of a humid 154 
heatwave associated with a westward extension of the Western Pacific Subtropical High [Ding et al., 155 
2022; Wang and Sun, 2022], which brought rain-bearing, low-O3 air from the tropical Pacific to South 156 
China (Fig.S5). Despite that surface air temperature in South China in September 2021 was two standard 157 
deviations warmer than the 1981-2010 average, ozone was not significantly enhanced. Increased water 158 
vapor enhanced ozone chemical loss. Persistent rainfall also maintained sufficient soil moisture for 159 
healthy vegetation, leading to efficient removal of O3 through uptake by plant stomata. In late summer–160 
autumn 2019, Eastern China suffered an extreme drought with long-lasting duration and record-breaking 161 
intensity, caused by the meridionally elongated cyclonic circulation anomalies over the western North 162 
Pacific and the enhanced northerly wind anomalies over eastern China [Liu and Zhou, 2021; Chen et al., 163 
2023; Fig.S5]. The drought started in the Yangtze Plain during August-September and propagated into 164 
South China during September–November. Deterioration of ozone air quality in the Pearl River Delta 165 
manifested as an expansion of the ozone season in 2019, with monthly mean MDA8 O3 consistently 166 
above 70 ppbv and above one standard deviation from September through November (Fig.S1). The 2022 167 
drought was more severe than the 2019 drought (Fig.1), and was characterized by rapid intensification 168 
[Liu et al., 2023; Ma et al., 2022; Zhang et al., 2023]. As drought intensified, ozone pollution increased 169 
rapidly in the Yangtze Plain during September 2022 and in the Pearl River Delta during September–170 
October 2022 (Fig.S1).  171 
 172 
4. Reduced ozone removal by drought-stressed vegetation 173 
[Figure 2 about here] 174 
Using satellite observations and model simulations, we show soil water stress reduced vegetation 175 
health, photosynthesis, and ozone uptake by vegetation (Fig.2). During September 23–30 of 2019, the 176 
VIIRS Vegetation Health Index was well below 36 in the Yangtze Plain (Hubei and Henan), indicating 177 
levels of vegetation stress, losses of crop, and pasture production (Fig.2A). In contrast, the indices 178 
were well above 60 during September 23–30 of 2017 under wetter conditions (Fig.1), indicating 179 
favorable conditions for plentiful growth. Fig.2B compares TROPOMI solar induced fluorescence 180 
(SIF), a key indicator of a plant’s photosynthetic activity, under normal conditions (average of 2018, 181 
2020, 2021, and 2023) versus under drought stress in 2019 and 2022. SIF exhibits pronounced 182 
reductions (exceeding one standard deviation) in the Middle Reaches of the Yangtze Plain during 183 
September 2019, consistent with deterioration of vegetation health. During September 2022, the SIF 184 
reduction expanded to a larger land area, including Sichuan-Chongqing, Guizhou, Hubei, and Hunan in 185 
the Upper-Middle Yangtze Plain, consistent with drought stress in these areas.  186 
 187 
Figure 2C-2D shows daytime (9AM-3PM local time) ozone deposition rates averaged over all 188 
vegetation types for September 20–30 of 2019 and 2022 versus 2017 from two AM4 simulations with 189 
different soil water availability. In AM4_drySoil, daytime Vd,O3 over the Yangtze plain decreased to 0.2–190 
0.4 cm s-1 in 2019 and 2022, representing a 60% reduction from 0.5–0.7 cm s-1 under wet conditions in 191 
2017,  primarily due to the limitation of stomatal conductance under soil water stress (Fig.S3). With 192 
higher soil moisture in AM4_wetSoil, stomatal closure was not triggered and simulated Vd,O3 did not 193 
show significant changes in 2019 / 2022 compared to 2017. The very low Vd,O3 values (0.2–0.4 cm s-1) 194 
simulated in AM4_drySoil for Southeast China in 2022 agrees with those derived from ozone flux 195 
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measurements at forest sites during the European mega-drought of 2003 and the North American mega-196 
drought of 2012 [Lin et al., 2019; 2020]. Further supporting our model results, AM4_drySoil simulated 197 
areas with the most pronounced Vd,O3 decreases are consistent with satellite observations of the vegetated 198 
areas with reductions in photosynthesis.  199 
 200 
5. Increased isoprene emissions and ozone production 201 
[Figure 3 about here] 202 
TROPOMI observed a 30% increase of !HCHO in forested regions over Southeast China during 203 
September 2019 (Fig.3A) and 2022 (Fig.S6-S7). Increases in biogenic isoprene emissions and	!HCHO 204 
are seen over Southeast China in AM4_drySoil simulations with MEGAN (Fig.3B-3C). Simulated 205 
!HCHO has a large bias against TROPOMI over North China, which may reflect uncertainties in 206 
anthropogenic VOC emissions or in the land cover dataset used by MEGAN [e.g., Ma et al., 2019; Pu 207 
et al., 2022]. A few studies reported sustained drought stress leading to decreased isoprene emissions 208 
based on flux measurements at a temperate forest during the 2012 U.S. drought [Seco et al., 2015; Zheng 209 
et al., 2017; Opacka et al., 2022; Shutter et al., 2024]. For Southeast China, however, TROPOMI !HCHO 210 
reveals little evidence of a drought suppression effect. For both September 2019 and 2022, the areas with 211 
the largest !HCHO increases over Southeast China correspond to the areas with positive anomalies in 212 
Tmax, indicating that the response of isoprene emissions to heat stress is the main driver for these !HCHO 213 
increases detected from space. Positive !HCHO anomalies were also observed during the 2005 Amazon 214 
drought and the 2010 Russian heatwave and drought [Marengo et al., 2008; Morfopoulos et al., 2022]. 215 
Isoprene emissions can continue at a high rate even when carbon assimilation is reduced due to stomatal 216 
closure [Sharkey and Monson, 2014].  217 
 218 
[Figure 4 about here]  219 
Land-atmosphere interactions have been recognized as a key reason for the amplification and persistence 220 
of heatwaves [e.g., Teuling, 2018]. Sensitivity simulations with AM4 show that dry soils warm the 221 
atmosphere and thereby amplify the temperature-driven increase in isoprene emissions over South China 222 
during September 2019 and 2022 (Fig.4). Monthly mean Tmax increases by 2–3 oC from AM4_wetSoil 223 
to AM4_drySoil, leading to better agreements with observations. Isoprene emissions in AM4_drySoil 224 
increase by 27% (2–6 mg m-2 day-1) on average over Southeast China.  225 
 226 
Fig.3D-3E displays anomalies in Ox (odd oxygen) production rates in AM4_drySoil, 850 hPa wind 227 
vectors, and surface downward shortwave radiation for September 2019. In contrast to 2017 and 2021 228 
when southerly winds bring rain-bearing, low-NOx air from the tropical Pacific to most of south China, 229 
the overwhelming northerly winds during September 2019 and 2022 bring dry and NOx-rich air from 230 
the highly industrialized North China Plain to south China. Transported anthropogenic NOx likely 231 
interacted with increased isoprene emissions from vegetation to accelerate in situ ozone production in 232 
the presence of strong downward solar radiation. Reductions in Vd of ozone precursors due to drought 233 
stress in vegetation also contribute to increased ozone production. Elevated ozone concentrations in 234 
Southeast China result not simply from transport of ozone suggested by some previous studies [e.g., 235 
Yang et al., 2024].  236 
 237 
6. Impacts on surface ozone concentrations 238 
[Figure 5 about here] 239 
Finally, we quantify the extent to which biosphere-atmosphere interactions have influenced the observed 240 
ozone extremes during hot droughts. Observations show that September mean surface MDA8 O3 in the 241 
Yangtze River Basin and the Pearl River Basin was 20–30 ppbv higher in 2019 and 2022 than 2017 242 
(Fig.5). The two AM4 simulations with a different land state exhibit a striking contrast in their skill in 243 
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representing the observed ozone anomalies. The AM4_wetSoil simulation, which shows little change in 244 
Vd,O3 (Fig.2D), captures up to 50% of the observed ozone anomalies. With substantial reductions in 245 
ozone uptake by vegetation (Fig.2C) and increases in isoprene emissions due to warmer temperatures 246 
(Fig.4), AM4_drySoil captures much better the magnitude and spatial pattern of observed high-ozone 247 
anomalies across Southeast China.  248 
 249 
[Figure 6 about here] 250 
The land-biosphere feedbacks exacerbate the most severe ozone events, causing an upward shift in the 251 
probability density distribution of daily MDA8 O3 in Southeast China during hot droughts (Fig.6A). 252 
Results are also shown from the FIXDEPV simulation, in which soil characteristics follow AM4_drySoil 253 
but Vd of ozone and its precursors are prescribed at 2018 monthly values. Contrasting simulated MDA8 254 
O3 between AM4_drySoil and FIXDEPV allows us to isolate the role of reduced ozone removal by 255 
vegetation. Since Vd,O3 in AM4_wetSoil  exhibits little interannual variability and is almost identical to 256 
the 2018 level used in FIXDEPV (Fig.S3), we contrast MDA8 O3 between AM4_wetSoil and FIXDEPV 257 
to gauge the contribution from higher isoprene emissions and chemical rates resulting from warmer 258 
temperatures. We find that limitation in ozone removal due to drought stress in vegetation plays a 259 
dominant role in elevating ozone during compound drought and heat events in the Southeast. The number 260 
of events in which MDA8 O3 exceeds 100 ppbv increases from 3% in AM4_wetSoil to 4% in FIXDEPV 261 
and 11% in AM4_drySoil, compared with 10% in observations. Events above 90 ppbv increase from 262 
10% in FIXDEPV (AM4_wetSoil) to 28% in AM4_drySoil, compared to 24% in observations. Previous 263 
models have difficulties simulating observed peak ozone episodes [e.g., Hao et al., 2021; Gong et al., 264 
2021]. Here we show that accounting for the limitation in ozone uptake by drought-stressed vegetation, 265 
the distribution of ozone concentrations shifts towards that in observations. The 95th percentile of MDA8 266 
O3 in AM4_drySoil matches the observed value (107 ppbv), increasing by 11 ppbv relative to 267 
AM4_wetSoil and 10 ppbv relative to FIXDEPV. These impacts are significant, given that the Chinese 268 
National Ambient Air Quality Standard for MDA8 O3 is 160 µg/m3, approximately 80 ppbv. During  hot 269 
droughts, daily MDA8 O3 can range from 80 to 130 ppbv for 10 to 20 consecutive days.  270 
  271 
Satellite-derived HCHO-to-NO2 ratios indicate a VOC-limited or transitional ozone production regime 272 
over megacity clusters in the North China Plain, the Yangtze River Delta and the Pearl River Delta, 273 
while a NOx-limited regime is found in less-developed, BVOC-rich areas in South China [Jin and 274 
Holloway, 2015; Ren et al., 2022]. Our model also shows that ozone in South China responds (decreases) 275 
more strongly to 20% reductions in anthropogenic NOx than VOC emissions (Fig.S8). Aligned with the 276 
NOx-limited ozone formation in South China, we find that a 27% increase in isoprene emissions in 277 
FIXDEPV (AM4_drySoil) relative to AM4_wetSoil have only marginal (< 5 ppbv) impacts on ozone in 278 
the Yangtze Plain (orange vs green lines in Fig.6B). In contrast, reductions in ozone removal by 279 
vegetation increased MDA8 O3 concentrations by 10–20 ppbv during ozone episodes in 2022 (red vs 280 
orange lines in Fig.6B). Over the Pearl River Delta in 2022, total MDA8 O3 change between 281 
AM4_drySoil and AM4_wetSoil is approximately 20 ppbv, for which warmer temperatures and 282 
increased isoprene emissions contribute 5–8 ppbv and reductions in ozone deposition contribute  8–15 283 
ppbv (Fig.6C). 284 
 285 
7. Implications for ozone air quality forecasting 286 
Building upon our previous work for North America and Europe [Lin et al., 2019; Lin et al., 2020], this 287 
study highlights substantial reductions in ozone uptake by vegetation as a key mechanism driving recent 288 
ozone pollution extremes in Southeast China during hot droughts. As compound drought and heat events 289 
are projected to increase in a warming climate [e.g., Chen et al., 2023; Zhang et al., 2024], a mechanistic 290 
understanding of ozone pollution during hot droughts is crucial to improve forecasting for public health 291 
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alerts. Using a decade of observations and model simulations, we show that soil moisture deficits reduce 292 
ozone removal by vegetation, amplify heatwaves, and boost isoprene emissions. Including the effects of 293 
soil moisture deficits on ozone deposition and precursor emissions in models can improve forecasting of 294 
ozone extremes. Since soil moisture has longer persistence than atmospheric conditions, initialization of 295 
soil moisture using satellite observations in a coupled land–atmospheric chemistry model may increase 296 
the predictive lead time of ozone extremes and help with public health alerts in populated regions in 297 
China, North America and Europe.  298 
 299 
Open Research 300 
The source code of AM4 used in this study is identical to its variable-resolution version AM4VR, 301 
available at Lin (2023).  302 
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Figure Captions 567 
 568 
Figure 1. Maps of observed anomalies in September mean daily maximum temperature (Tmax, with 569 
stippling indicating two standard deviations warmer than the 1981-2010 average), 570 
Standardized Precipitation Evapotranspiration Index integrated over August-September (SPEI02), and 571 
September mean surface MDA8 O3 concentrations from observations and model simulations 572 
(AM4_drySoil) from 2014 to 2022. 573 
 574 
Figure 2. Comparison of data from normal conditions (2017) and drought conditions (2019 and 2022) 575 
in September for: (A) VIIRS Vegetation Health Index (VHI), (B) TROPOMI Solar Induced 576 
Fluorescence (SIF), and (C-D) Simulated daytime ozone dry deposition velocities (Vd,O3) from the 577 
AM4_drySoil and AM4_wetSoil experiments. Note that TROPOMI data for 2017 is unavailable, so 578 
the average of data from 2018, 2020, 2021, and 2023 is used to represent normal conditions. 579 
 580 
Figure 3. Anomalies in September 2019 relative to 2018 for: (A-B) Satellite-retrieved and 581 
AM4_drySoil simulated tropospheric column densities of formaldehyde (!HCHO); (C) Simulated 582 
biogenic isoprene emissions; (D) Simulated ozone (odd oxygen) production rates overlaid with 850 583 
hPa winds; and (E) ERA5-observed surface downward shortwave radiation. 584 
 585 
Figure 4. Monthly mean Tmax for September 2019 and 2022 from observations and model simulations 586 
with different soil moisture levels, along with the impact (drySoil minus wetSoil) on biogenic isoprene 587 
emissions. 588 
 589 
Figure 5. Anomalies in September mean surface MDA8 O3 for 2019 and 2022 relative to 2017 from 590 
observations and two model simulations with changes in soil characteristics. The rectangles denote the 591 
Yangtze River Basin (black) and the Pearl River Delta (gray) analyzed in Fig.6. 592 
 593 
Figure 6. (A) Probability density distribution of daily MDA8 O3 in Southeast China for September 594 
2019 and 2022 from observations (black) and three model simulations: AM4_wetSoil (green), 595 
AM4_drySoil (red), and FIXDEPV (orange, same as drySoil, but with fixed-2018 Vd). The 95th 596 
percentile (q95), standard deviation (#) and percentage of site-days with MDA8 O3 exceeding 90 597 
(D90) and 100 (D100) ppbv are shown. (B-C) Daily MDA8 O3 during September from 2017 to 2022 in 598 
the Yangtze River Basin (YRB) and the Pearl River Delta (PRD), respectively. Black dots represent 599 
the observed values averaged over sites in that region and gray bars represent cross-site standard 600 
deviation. Correlations (r2) between observations and model simulations are shown.  601 
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Figure 1. Maps of observed anomalies in September mean daily maximum temperature (Tmax, with
stippling indicating two standard deviations warmer than the 1981-2010 average), the Standardized
Precipitation Evapotranspiration Index integrated over August-September (SPEI02), and September mean
surface MDA8 O3 concentrations from observations and model simulations (AM4 drySoil) from 2014 to
2022.
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Figure 2. Comparison of data from normal conditions (2017) and drought conditions (2019 and 2022) in
September for: (A) VIIRS Vegetation Health Index (VHI), (B) TROPOMI Solar Induced Fluorescence
(SIF), and (C-D) Simulated daytime ozone dry deposition velocities (Vd,O3) in the AM4 drySoil versus
AM4 wetSoil experiments. Note that TROPOMI data are unavailable in 2017, so the average of 2018,
2020, 2021 and 2023 is used to represent normal conditions.
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Figure 3. Anomalies in September 2019 relative to 2018 for: (A-B) Satellite-retrieved and
AM4 drySoil simulated tropospheric column densities of formaldehyde (ΩHCHO); (C) Simulated biogenic
isoprene emissions; (D) Simulated ozone (odd oxygen) production rates overlaid with 850 hPa winds; and
(E) ERA5-observed surface downward shortwave radiation.



Figure 4. Monthly mean Tmax for September 2019 and 2022 from observations and AM4 wetSoil and
AM4 drySoil experiments and simulated difference (drySoil minus wetSoil) in biogenic isoprene emissions.



Figure 5. Anomalies in September mean surface MDA8 O3 for 2019 and 2022 relative to 2017 from
observations and two model simulations with changes in soil characteristics. The rectangles denote the
Yangtze River Basin (black) and the Pearl River Delta (gray) analyzed in Fig.6.
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Figure 6. (A) Probability density distribution of daily MDA8 O3 in Southeast China in September 2019 and
2022 from observations (black) and three model simulations: AM4 wetSoil (green), AM4 drySoil (red), and
FIXDEPV (orange, same as drySoil but with fixed-2018 Vd). The 95th percentile (q95), standard deviation
(σ) and percentage of site-days with MDA8 O3 exceeding 90(D90) and 100 (D100) ppbv are shown. (B-C)
Daily MDA8 O3 during September from 2017 to 2022 in the Yangtze River Basin (YRB) and the Pearl
River Delta (PRD), respectively. Black dots represent the observed values averaged over sites in that
region and gray bars represent cross-site standard deviation. Correlations (r2) between observations and
simulations are shown.


