
Lecture 2. Physical properties 

1. Aerosol Size Distribution

 
Radius or diameter characterize size of one particles, but the particles may 
have complex shapes + radii vary by orders of magnitude => NOT one size 
but size distribution covering full spectrum of radius.  

Figure2.1. Detailed electron micrographs of individual dust particles collected in 
Puerto Rico (Reid et al., 2003). 

 

If particle is non-spherical, its equivalent radius is introduced. There are several ways to 
define particle equivalent radius (for instance, aerodynamic equivalent radius, which is 



radius of a sphere that experience the same resistance to motion as the nonspherical 
particle).  

How to calculate aerodynamic radius 

The Stokes law gives the force (drag) acting on a smooth particle due to laminar flow of 
air. Fdrag=6 rput where  is the dynamic viscosity [kg/m/s], rp the radius of the spherical 
particle, and ut is the speed of the fluid. For a particle falling freely mg=4/3g prp

2=Fdrag, 
and the settling velocity is given by: 
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 is the slip correction factor 
to take into account that the drag force is smaller than predicted for particles of the order 
of the mean free path  The values of Cc is around 1 for rp= 1 m and Cc=2 for 
rp=0.1 m. As  increases with decreasing atmospheric pressure Cc increases with altitude 
in the troposphere and should not be neglected in modeling aerosol removal.  

The Stokes radius rst is the radius of a sphere having the same terminal settling velocity 
and density as the particle. The aerodynamic radius for a sphere of unit density is then 
given by: 
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Figure 2.2 Typical aerosol number distributions in different environments. 



  

Number distributions are important for microphysical processes but for air 
quality volume size distribution is more important as the mass concentration 
is monitored, while for optical properties the surface area or volume size 
distribution is responsible for light attenuation. 

Clean Air Act requires EPA to set the National Ambient Air Quality 
Standards NAAQS.  

Table 2.1 EPA standards for particulates 

Particulate Matter with 
diameter less than 2.5 
or 10 m 

Primary Standards 
(Maximum 
concentration) 

Averaging Period 

PM2.5 15 mg/m3 1 year 
PM2.5 35 g/m3 24 hours 
PM10 150 g/m3 24 hours 



By assuming spherical particle it is easy to evaluate from figure 2.2 the mass 
concentration of particles in a size range and compare the values with EPA 
standards of Table 2.1 

 

Figure 2.1 Distribution of surface area of ambient aerosols (from Whitby and 
Cantrell, 1976).  

Aerosol distribution characterized by 3 modes: 

fine mode (d < 2.5 m) and coarse mode (d > 2.5 m);  

fine mode is divided on the nuclei mode (about 0.005 m < d < 0.1 m) and  

accumulation mode (0.1 m < d < 2.5 m). 



NOTE: The distinction between fine and coarse particles is a fundamental because, 
in general, the fine and coarse particles mode originate separately, are transformed 
separately, are removed from the atmosphere by different mechanisms, have 
different chemical composition, have different optical properties, etc. 

Once in the atmosphere, atmospheric aerosols evolve in time and space: 

 

1. may be transported in the atmosphere; 
2. may be removed from the atmosphere (by dry deposition, wet removal, and 

gravitational sedimentation); 
3. can change their size and composition due to microphysical transformation 

processes;  
4. can undergo chemical transformation. 

2. Mathematical formulation of aerosol distribution.

  

The diameters of atmospheric aerosol particles span over four orders of 
magnitude, from a few nanometers to around 100 m. Particle number 
concentrations may be as high as 107 to 108 cm-3. Thus, a complete 
description of the aerosol size distribution may be a challenging problem. 
Therefore, several mathematical approaches are used to characterize the 
aerosol size distribution.  

Discrete approximation: particle size range is divided into discrete intervals (or size 
bins) and the number of particles is calculated in each size bin. 

Continuous approximation: particle size distribution is represented by analytical 
function vs. radius. 

Let’s consider first discrete approximation of aerosol size distribution. 

Table 25.2. Example of segregated aerosol size information. 

Size range 
(diameter, m) 

Concentration (cm-3) Cumulative 
concentration (cm-

3) 

Normalized 
concentration  

( m-1cm-3) 

0.001 - 0.01 100 100 11111 

0.01-0.02 200 300 20000 

0.02-0.03 30 330 3000 

0.03-0.04 20 350 2000 



0.04-0.08 40 390 1000 

0.08-0.16 60 450 750 

0.16-0.32 200 650 1250 

0.32-0.64 180 830 563 

0.64-1.25 60 890 98 

1.25-2.5 20 910 16 

2.5-5.0 5 915 2 

5.0-10.0 1 916 0.2 

Cumulative concentration is defined as the concentration of particles that are 
smaller than or equal to a given size range. 

Normalized concentration is defined as the concentration of particles in a size bin 
divided by the width of this bin. 

If the i-bin has Ni particle concentration, thus normalized concentration in the i-bin 
is  

nNi = Ni / Di 

where Di is the width of the i-bin. 

 

Discrete size distribution is typically presented in the form of histogram.  



Figure 25.3 Histogram of aerosol particle number concentrations vs. the size range 
for the distribution of Table 25.2.  

   

Figure 25.4 Histogram of aerosol particle number concentration normalized by the 
width of the size range for the distribution of Table 25.2.  



 

Figure 25.5 Same as Figure 25.4 but plotted vs. the logarithm of the diameter. 

 

NOTE: That in Figures 25.3-25.4 smaller particles are hardly seen, but if a 
logarithmic scale is used for the diameter (Figure 25.5) both the large- and small-
particles regions are depicted.   



Major limitation of discrete approximation:

  
loss of information about the distribution structure inside each bin.   

Let’s consider continuous approximation.  

We can define the size distribution function nN(D) as follows: 

nN(D) dD = the number of particles per cm3 of air having diameters in the range D 
and 

D + dD (here dD is an infinitesimally small increase in diameter). 

If units of nN(D) are m-1cm-3 and the total number of particles per cm-3 , N, is then 
just  

N = nN(D) dD 

On the other hand 

nN(D) = dN/dD 

NOTE: both sides of the equation above represent the same aerosol distribution, 
and both notations are widely used. 

Several aerosol properties depend on the particle surface area and volume 
distributions with respect to particle size. 

Let’s define aerosol surface area distribution nS(D) as  

nS(D) dD = the surface area of particles per cm3 of air having diameters in the 
range D and D + dD (here dD is an infinitesimally small increase in diameter). 

If all particles are spherical and have the same diameter D in this infinitesimally 
narrow size range that each of them has surface area D2, we have  

nS(D) = D2 nN(D) 

Here nS(D) is in m cm-3. 

Thus the total surface area S of the aerosol particles per cm3 of air is  



S = D2 nN(D) dD = nS(D) dD 

Here S is in m2 cm-3. 

Let’s define aerosol volume distribution nV(D) as  

nV(D) dD = the volume of particles per cm3 of air having diameters in the range D 
and D + dD (here dD is an infinitesimally small increase in diameter), 

and therefore 

nV(D) = D3 nN(D) /6 

Here nV(D) is in m2 cm-3. 

Thus the total aerosol volume V per cm3 of air is  

V = D3 nN(D) dD = nV(D) dD 

Here V is in m3 cm-3.   

 

The aerosol distribution is more convenient to express as functions 
of ln(D)or log(D), because particle sizes span several orders of 
magnitude.   

Let’s define the number distribution function nN
e(ln(D)) in cm-3 as  

nN
e(ln(D)) d ln(D) = the number of particles per cm3 of air having diameters in the 

range ln(D) and ln(D) + d ln(D).  

NOTE: We cannot take the logarithm of a dimensional quantity. Thus, when we 
write ln(D) we really mean ln(D/1), where the "reference" particle diameter is 1 m 
is not explicitly indicated. 

The total number of particles per cm-3, N, is then just  



N = nN
e(ln(D)) d ln(D) 

The surface area and volume distributions as functions of ln(D) can be defined 
similarly to those with respect to D, as  

nS
e(ln(D)) = D2 nN

e(ln(D)) 

nV
e(ln(D)) = D3 nN

e(ln(D)) /6 

Here nS
e(ln(D)) is in m2 cm-3, and nV

e(ln(D)) is in m3 cm-3.  

Thus for S and V we have 

S = D2 nN
e(ln(D)) d ln(D) = nS

e(ln(D)) d ln(D) 

V = D3 nN
e(ln(D)) d ln(D) = nV

e(ln(D)) d ln(D) 

NOTE: The above aerosol distributions can be also expressed as functions of the 
base 10 logarithm log (D), defining nN

o(log(D)), nS
o(log(D)), and nV

o(log(D)). 

Thus we have 

dN = nN(D) dD =nN
e(ln(D)) d ln(D) = nN

o(log(D)) d log(D) 

dS = nS(D) dD =nS
e(ln(D)) d ln(D) = nS

o(log(D)) d log(D) 

dV = nV(D) dD =nV
e(ln(D)) d ln(D) = nV

o(log(D)) d log(D) 

Since d log(D) = d ln(D) / 2.303 = dD /2.303 D , we can relate the distributions above 
as: 

nN
e(ln(D)) = D nN(D) 

nS
e(ln(D)) = D nS(D) 

nV
e(ln(D)) = D nV(D) 

nN
o(log(D)) = 2.303 D nN(D) 

nS
o(log(D)) = 2.303 D nS(D) 

nV
o(log(D)) = 2.303 D nV(D) 



 
Several mathematical functions are used to describe the atmospheric 
aerosol distribution (lognormal function, power-law function, etc.) 

Log-normal function:
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Where N is the total aerosol number concentration, Dg and g are the parameters 
of a log-normal distribution: Dg is the median diameter, that is, the diameter for 
which exactly one-half of the particles are smaller and one-half are larger; and g is 
termed geometric standard deviation, which is a ratio of the diameter below which 
84.1% of the particles lie to the median diameter.  

NOTE: A lognormal function is very often used to represent aerosol size 
distribution because of its properties.  

Some properties of the log-normal distribution:

  

If the number distribution nN(D) is log-normal, the surface distribution 
nS(D) is also log-normal with the same geometric standard deviation g and 
with the surface median diameter, DgS, given by  

ln(DgS) = ln(Dg) + 2 ln2( g) 

 

If the number distribution nN(D) is log-normal, the volume distribution 
nV(D) is also log-normal with the same geometric standard deviation g and 
with the volume median diameter, DgV, given by  

ln(DgV) = ln(Dg) + 3 ln2( g)   

Volume size distribution 
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Where DV is the volume median diameter (mean logarithm of diameter) 

Dd
Dd

dV

Dd
Dd

dV
D

DV

ln
ln

ln
ln

ln
ln 

V is the standard deviation from the volume median diameter 

Dd
Dd

dV

Dd
Dd

dV
DD V

V

ln
ln

ln
ln

)ln(ln 2

 

CV is the volume concentration 
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Figure 25.6 Particle number log-normal distribution with Dg = 0.8 m and g= 
1.5, for N = 1000 cm-3 

 



Figure 25.7 Particle surface log-normal distribution for number distribution from 
Figure 25.6 

 

NOTE: nN(D) = dN/dD and : nS(D) = dS/dD 

NOTE: For multiple modes, lognormal functions are summed. For m 
modes, the volume size distribution is given by  
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Table 2.2 Selected values of rg (median radius) and g standard deviation 
for different aerosol types 

Aerosol type Density [g/cm3] rg [ m] g 

Sulfate 1.7 0.07 2 
Organic carbon 1.8 0.02 2.2 
Black carbon 1 0.01 2 
Dust 2.6 0.04 2 

 

2.6 0.07 2 

 

2.6 0.14 2 

 

2.6 0.24 2 

 

2.6 0.42 2 

 

2.6 0.72 2 

 

2.6 1.4 2 



Sea Salt 2.2 0.2 2 

 
2.2 1.64 2 

 
Power-law function (or Junge distribution): 

 

nN
o(log(D)) = C / (D)

 

where C and  are constants.  

Plotting of the power-law distribution on log-log coordinates results in a 
straight line with slope  and for D = 1 m, nN

o= C. 

 

This distribution function assumes that the aerosol number concentration 
decreases monotonically with increasing particle size. This is not generally 
true for atmospheric aerosols so the power-law can be used for particles of D 
> 0.1 m. 

 

The main advantage of power-law distribution is its simplicity. 

 

For spherical particles, the volume distribution nV
o(logD) is given by 
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 and if =3 then nV
o(logD)=C  


