Coupled ocean and prescribed sea surface temperature (SST) experiments are performed to investigate the drivers of Northern Hemisphere (NH) midlatitude winter circulation and blocking changes in warmer climates. In coupled experiments, a historical simulation is compared to a simulation following an end of the twenty-first-century shared socioeconomic pathway (SSP5-8.5) emission scenario. The SSP5-8.5 simulation yields poleward-shifted jets and an enhanced stationary wave pattern compared to the historical simulation. In terms of blocking, a reduction is found across North America and over the Pacific Ocean with the suggestion of more blocking over parts of Eurasia. Separately, prescribed SST experiments are performed decomposing the SSP5-8.5 SST response into a uniform warming component plus a spatially dependent change in SST pattern. SSP5-8.5 changes in circulation are primarily driven by a uniform warming of SST. Uniform warming is also found to account for most of the SSP5-8.5 blocking reduction over North America and the Pacific Ocean, but not over Eurasia. El Niño–like changes to the SST pattern also yield less blocking over the Pacific and North America. However, adding the responses of uniform and pattern experiments yields a nonlinear overreduction of blocking compared to the SSP5-8.5 experiment. Regional analyses of block energetics suggest that much of the reductions in blocking in warming simulations are driven by decreased baroclinic conversion in some regions and enhanced dissipation from diabatic sources in others.
Narinesingh, Veeshan, James F Booth, and Yi Ming, January 2023: Northern hemisphere heat extremes in a warmer climate: More probable but less colocated with blocking. Geophysical Research Letters, 50(2), DOI:10.1029/2022GL101211. Abstract
This work uses reanalysis and NOAA Geophysical Fluid Dynamics Laboratory's Coupled Model Intercomparison Project 6 model, CM4, to investigate the colocation of heat extremes and atmospheric blocking in the current climate and an end of 21st century, extreme-emissions projection. In the present day, the colocation of heat events and blocking is greatest for the strongest heat events. Block-heat extreme colocation is found to be less prevalent over ocean than land, exhibiting regional variation throughout the Northern Hemisphere. Over North America, colocation is greatest near the northwestern and northeastern coasts, minimizing near the center; over Eurasia, colocation is most prevalent in northern regions. In an RCP 8.5 projection, the historical 90th percentile temperature decreases to 0–70th percentile, depending on the region. This is primarily driven by mean state warming. Blocking is found to decrease along with the colocation of blocking and heat extremes, suggesting that in some regions, the mechanisms driving heat extremes will change in future climates.
White, Rachel H., Sam Anderson, James F Booth, Ginni Braich, Christina Draeger, Cuiyi Fei, Christopher D G Harley, Sarah B Henderson, Matthias Jakob, Carie-Ann Lau, Lualawi Mareshet Admasu, Veeshan Narinesingh, Christopher Rodell, Eliott Roocroft, Kate R Weinberger, and Greg West, February 2023: The unprecedented Pacific Northwest heatwave of June 2021. Nature Communications, 14, 727, DOI:10.1038/s41467-023-36289-3. Abstract
In late June 2021 a heatwave of unprecedented magnitude impacted the Pacific Northwest region of Canada and the United States. Many locations broke all-time maximum temperature records by more than 5 °C, and the Canadian national temperature record was broken by 4.6 °C, with a new record temperature of 49.6 °C. Here, we provide a comprehensive summary of this event and its impacts. Upstream diabatic heating played a key role in the magnitude of this anomaly. Weather forecasts provided advanced notice of the event, while sub-seasonal forecasts showed an increased likelihood of a heat extreme with lead times of 10-20 days. The impacts of this event were catastrophic, including hundreds of attributable deaths across the Pacific Northwest, mass-mortalities of marine life, reduced crop and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase in wildfires—the latter contributing to landslides in the months following. These impacts provide examples we can learn from and a vivid depiction of how climate change can be so devastating.
This study examines the climatology and dynamics of atmospheric blocking, and the general circulation features that influence blocks in GFDL’s atmosphere-only (AM4) and coupled atmosphere–ocean (CM4) comprehensive models. We compare AM4 and CM4 with reanalysis, focusing on winter in the Northern Hemisphere. Both models generate the correct blocking climatology and planetary-scale signatures of the stationary wave. However, at regional scales some biases exist. In the eastern Pacific and over western North America, both models generate excessive blocking frequency and too strong of a stationary wave. In the Atlantic, the models generate too little blocking and a weakened stationary wave. A block-centered compositing analysis of block-onset dynamics reveals that the models 1) produce realistic patterns of high-frequency (1–6-day) eddy forcing and 2) capture the notable differences in the 500-hPa geopotential height field between Pacific and Atlantic blocking. However, the models fail to reproduce stronger wave activity flux convergence in the Atlantic compared to the Pacific. Overall, biases in the blocking climatology in terms of location, frequency, duration, and area are quite similar between AM4 and CM4 despite the models having large differences in sea surface temperatures and climatological zonal circulation. This could suggest that other factors could be more dominant in generating blocking biases for these GCMs.
Many fundamental questions remain about the roles and effects of stationary forcing on atmospheric blocking. As such, this work utilizes an idealized moist general circulation model (GCM) to investigate atmospheric blocking in terms of dynamics, geographical location, and duration. The model is first configured as an aquaplanet, then orography is added in separate integrations. Block-centered composites of wave activity fluxes and height show that blocks in the aquaplanet undergo a realistic dynamical evolution when compared to reanalysis. Blocks in the aquaplanet are also found to have similar life cycles to blocks in model integrations with orography. These results affirm the usefulness of both zonally symmetric and asymmetric idealized model configurations for studying blocking. Adding orography to the model leads to an increase in blocking. This mirrors what is observed when comparing the Northern Hemisphere (NH) and Southern Hemisphere (SH), where the NH contains more orography and thus more blocking. As the prescribed mountain height increases, so do the magnitude and size of climatological stationary waves, resulting in more blocking overall. Increases in blocking, however, are not spatially uniform. Orography is found to induce regions of enhanced block frequency just upstream of mountains, near high pressure anomalies in the stationary waves, which is poleward of climatological minima in upper-level zonal wind, while block frequency minima and jet maxima occur eastward of the wave trough. This result matches what is observed near the Rocky Mountains. Finally, an analysis of block duration suggests blocks generated near stationary wave maxima last slightly longer than blocks that form far from or without orography. Overall, the results of this work help to explain some of the observed similarities and differences in blocking between the NH and SH and emphasize the importance of general circulation features in setting where blocks most frequently occur.