Using a recently developed 1/12th degree regional ocean model, we establish a link between U.S. East Coast sea level variability and offshore upper ocean heat content change. This link manifests as a cross-shore mass redistribution driven by an offshore thermosteric sea level response to subsurface warming or cooling. Approximately 50% of simulated monthly to interannual coastal sea level variance south of Cape Hatteras can be statistically accounted for by this mechanism, realized as a function of regional ocean hypsometry, gyre scale warming, and the depth dependence of density change. This response to offshore warming explains the nonstationarity of U.S. East Coast sea level covariance, a specifically observed and modeled behavior after ~ 2010. Since approximately 2010, elevated rates of sea level rise south of Cape Hatteras can be partly explained as the result of shoreward mass redistribution due to offshore subsurface warming within the North Atlantic subtropical gyre. These results reveal a mechanism that connects local coastal sea level to a broader region and identifies the influence of regional heat content changes on coastal sea level. This analysis presents a framework for identifying new regions that may be susceptible to enhanced sea level rise due to ocean warming and helps bridge the gap between quantifying large scale change and anticipating local coastal impacts that can make flooding and storm surge more acutely damaging.
We describe an idealized primitive-equation model for studying mesoscale turbulence and leverage a hierarchy of grid resolutions to make eddy-resolving calculations on the finest grids more affordable. The model has intermediate complexity, incorporating basin-scale geometry with idealized Atlantic and Southern oceans and with non-uniform ocean depth to allow for mesoscale eddy interactions with topography. The model is perfectly adiabatic and spans the Equator and thus fills a gap between quasi-geostrophic models, which cannot span two hemispheres, and idealized general circulation models, which generally include diabatic processes and buoyancy forcing. We show that the model solution is approaching convergence in mean kinetic energy for the ocean mesoscale processes of interest and has a rich range of dynamics with circulation features that emerge only due to resolving mesoscale turbulence.