Krasting, John P., Stephen M Griffies, Jan-Erik Tesdal, Graeme A MacGilchrist, Rebecca L Beadling, and Christopher M Little, in press: Steric sea level rise and relationships with model drift and water mass representation in GFDL CM4 and ESM4. Journal of Climate. DOI:10.1175/JCLI-D-23-0591.1. September 2024. Abstract
Density-driven steric seawater changes are a leading-order contributor to global mean sea level rise. However, inter-model differences in the magnitude and spatial patterns of steric sea level rise exist at regional scales and often emerge during the spin-up and pre-industrial control integrations of climate models. Steric sea level results from an eddy-permitting climate model, GFDL-CM4, are compared with a lower resolution counterpart, GFDL-ESM4. The results from both models are examined through basin-scale heat budgets and watermass analysis, and we compare the patterns of ocean heat uptake, redistribution, and sea level differ in ocean-only (i.e. OMIP) and coupled climate configurations. After correcting for model drift, both GFDL-CM4 and GFDL-ESM4 simulate nearly equivalent ocean heat content change and global sea level rise during the historical period. However, the GFDL-CM4 model exhibits as much as a 40% increase in surface ocean heat uptake in the Southern Ocean and subsequent increases in horizontal export to other ocean basins after bias correction. The results suggest regional differences in the processes governing Southern Ocean heat export, such as the formation of AAIW, SPMW, and gyre transport between the two models, and that sea level changes in these models cannot be fully bias-corrected. Since the process-level differences between the two models are evident in the preindustrial control simulations of both models, these results suggest that the control simulations are important for identifying and correcting sea-level related model biases.
Lee, Jiwoo, Peter J Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A Ullrich, Kenneth R Sperber, Karl E Taylor, Yann Y Planton, Eric Guilyardi, Paul J Durack, Céline Bonfils, Mark D Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F Wehner, Angeline G Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T Wittenberg, and John P Krasting, May 2024: Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3. Geoscientific Model Development, 17(9), DOI:10.5194/gmd-17-3919-20243919–3948. Abstract
Systematic, routine, and comprehensive evaluation of Earth system models (ESMs) facilitates benchmarking improvement across model generations and identifying the strengths and weaknesses of different model configurations. By gauging the consistency between models and observations, this endeavor is becoming increasingly necessary to objectively synthesize the thousands of simulations contributed to the Coupled Model Intercomparison Project (CMIP) to date. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP) is an open-source Python software package that provides quick-look objective comparisons of ESMs with one another and with observations. The comparisons include metrics of large- to global-scale climatologies, tropical inter-annual and intra-seasonal variability modes such as the El Niño–Southern Oscillation (ENSO) and Madden–Julian Oscillation (MJO), extratropical modes of variability, regional monsoons, cloud radiative feedbacks, and high-frequency characteristics of simulated precipitation, including its extremes. The PMP comparison results are produced using all model simulations contributed to CMIP6 and earlier CMIP phases. An important objective of the PMP is to document the performance of ESMs participating in the recent phases of CMIP, together with providing version-controlled information for all datasets, software packages, and analysis codes being used in the evaluation process. Among other purposes, this also enables modeling groups to assess performance changes during the ESM development cycle in the context of the error distribution of the multi-model ensemble. Quantitative model evaluation provided by the PMP can assist modelers in their development priorities. In this paper, we provide an overview of the PMP, including its latest capabilities, and discuss its future direction.
We describe the baseline model configuration and simulation characteristics of the Geophysical Fluid Dynamics Laboratory (GFDL)'s Land Model version 4.1 (LM4.1), which builds on component and coupled model developments over 2013–2019 for the coupled carbon-chemistry-climate Earth System Model Version 4.1 (ESM4.1) simulation as part of the sixth phase of the Coupled Model Intercomparison Project. Analysis of ESM4.1/LM4.1 is focused on biophysical and biogeochemical processes and interactions with climate. Key features include advanced vegetation dynamics and multi-layer canopy energy and moisture exchanges, daily fire, land use representation, and dynamic atmospheric dust coupling. We compare LM4.1 performance in the GFDL Earth System Model (ESM) configuration ESM4.1 to the previous generation component LM3.0 in the ESM2G configuration. ESM4.1/LM4.1 provides significant improvement in the treatment of ecological processes from GFDL's previous generation models. However, ESM4.1/LM4.1 likely overestimates the influence of land use and land cover change on vegetation characteristics, particularly on pasturelands, as it overestimates the competitiveness of grasses versus trees in the tropics, and as a result, underestimates present-day biomass and carbon uptake in comparison to observations.
Accurate representation of mesoscale scale convective systems (MCSs) in climate models is of vital importance to understanding global energy, water cycles, and extreme weather. In this study, we evaluate the simulated MCS features over the United States from the newly developed GFDL global high-resolution (∼50 km) AM4 model by comparing them with the observations during spring to early summer (April–June) and late summer (July–August). The results show that the spatial distribution and seasonality of occurrence and genesis frequency of MCSs are reasonably simulated over the central United States in both seasons. The model reliably reproduces the observed features of MCS duration, translation speed, and size over the central United States, as well as the favorable large-scale circulation pattern associated with MCS development over the central United States during spring and early summer. However, the model misrepresents the amplitude and the phase of the diurnal cycle of MCSs during both seasons. In addition, the spatial distribution of occurrence and genesis frequency of MCSs over the eastern United States is substantially overestimated, with larger biases in early spring and summer. Furthermore, while large-scale circulation patterns are reasonably simulated in spring and early summer, they are misrepresented in the model during summer. Finally, we examine MCS-related precipitation, finding that the model overestimates MCS-related precipitation during spring and early summer, but this bias is insufficient to explain the significant dry bias observed in total precipitation over the central United States. Nonetheless, the dry biases in MCS-associated precipitation during late summer likely contribute to the overall precipitation deficit in the model.
The diurnal cycle of precipitation and precipitation variances at different time scales are analyzed in this study based on multiple high-resolution 3-h precipitation datasets. The results are used to evaluate nine CMIP6 models and a series of GFDL-AM4.0 model simulations, with the goal of examining the impact of SST diurnal cycle, varying horizontal resolutions, and different microphysics schemes on these two precipitation features. It is found that although diurnal amplitudes are reasonably simulated, models generally generate too early diurnal peaks over land, with a diurnal phase peaking around noon instead of the observed late afternoon (or early evening) peak. As for precipitation variances, irregular subdaily fluctuations dominate the total variance, followed by variance of daily mean precipitation and variance associated with the mean diurnal cycle. While the spatial and zonal distributions of precipitation variances are generally captured by the models, significant biases are present in tropical regions, where large mean precipitation biases are observed. The comparisons based on AM4.0 model simulations demonstrate that the inclusion of ocean coupling, adoption of a new microphysics scheme, and increasing of horizontal resolution have limited impacts on these two simulated features, emphasizing the need for future investigation into these model deficiencies at the process level. Conducting routine examinations of these metrics would be a crucial first step toward better simulation of precipitation intermittence in future model development. Last, distinct differences in these two features are found among observational datasets, highlighting the urgent need for a detailed evaluation of precipitation observations, especially at subdaily time scales, as model evaluation heavily relies on high-quality observations.
Neelin, J D., John P Krasting, Aparna Radhakrishnan, Jessica Liptak, Thomas Jackson, Yi Ming, Wenhao Dong, Andrew Gettelman, Danielle R Coleman, Eric Maloney, Allison A Wing, and Yi-Hung Kuo, et al., August 2023: Process-oriented diagnostics: Principles, practice, community development and common standards. Bulletin of the American Meteorological Society, 104(8), DOI:10.1175/BAMS-D-21-0268.1E1452-E1468. Abstract
Process-oriented diagnostics (PODs) aim to provide feedback for model developers through model analysis based on physical hypotheses. However, the step from a diagnostic based on relationships among variables, even when hypothesis driven, to specific guidance for revising model formulation or parameterizations can be substantial. The POD may provide more information than a purely performance-based metric, but a gap between POD principles and providing actionable information for specific model revisions can remain. Furthermore, in coordinating diagnostics development, there is a trade-off between freedom for the developer, aiming to capture innovation, and near-term utility to the modeling center. Best practices that allow for the former, while conforming to specifications that aid the latter, are important for community diagnostics development that leads to tangible model improvements. Promising directions to close the gap between principles and practice include the interaction of PODs with perturbed physics experiments and with more quantitative process models as well as the inclusion of personnel from modeling centers in diagnostics development groups for immediate feedback during climate model revisions. Examples are provided, along with best-practice recommendations, based on practical experience from the NOAA Model Diagnostics Task Force (MDTF). Common standards for metrics and diagnostics that have arisen from a collaboration between the MDTF and the Department of Energy’s Coordinated Model Evaluation Capability are advocated as a means of uniting community diagnostics efforts.
Takano, Yohei, Tatiana Ilyina, Jerry Tjiputra, Yassir A Eddebbar, Sarah Berthet, Laurent Bopp, Erik T Buitenhuis, Momme Butenschön, James R Christian, John P Dunne, Matthias Gröger, Hakase Hayashida, Jenny Hieronymus, Torben Koenigk, and John P Krasting, et al., November 2023: Simulations of ocean deoxygenation in the historical era: insights from forced and coupled models. Frontiers in Marine Science, 10, DOI:10.3389/fmars.2023.1139917. Abstract
Ocean deoxygenation due to anthropogenic warming represents a major threat to marine ecosystems and fisheries. Challenges remain in simulating the modern observed changes in the dissolved oxygen (O2). Here, we present an analysis of upper ocean (0-700m) deoxygenation in recent decades from a suite of the Coupled Model Intercomparison Project phase 6 (CMIP6) ocean biogeochemical simulations. The physics and biogeochemical simulations include both ocean-only (the Ocean Model Intercomparison Project Phase 1 and 2, OMIP1 and OMIP2) and coupled Earth system (CMIP6 Historical) configurations. We examine simulated changes in the O2 inventory and ocean heat content (OHC) over the past 5 decades across models. The models simulate spatially divergent evolution of O2 trends over the past 5 decades. The trend (multi-model mean and spread) for upper ocean global O2 inventory for each of the MIP simulations over the past 5 decades is 0.03 ± 0.39×1014 [mol/decade] for OMIP1, −0.37 ± 0.15×1014 [mol/decade] for OMIP2, and −1.06 ± 0.68×1014 [mol/decade] for CMIP6 Historical, respectively. The trend in the upper ocean global O2 inventory for the latest observations based on the World Ocean Database 2018 is −0.98×1014 [mol/decade], in line with the CMIP6 Historical multi-model mean, though this recent observations-based trend estimate is weaker than previously reported trends. A comparison across ocean-only simulations from OMIP1 and OMIP2 suggests that differences in atmospheric forcing such as surface wind explain the simulated divergence across configurations in O2 inventory changes. Additionally, a comparison of coupled model simulations from the CMIP6 Historical configuration indicates that differences in background mean states due to differences in spin-up duration and equilibrium states result in substantial differences in the climate change response of O2. Finally, we discuss gaps and uncertainties in both ocean biogeochemical simulations and observations and explore possible future coordinated ocean biogeochemistry simulations to fill in gaps and unravel the mechanisms controlling the O2 changes.
Tesdal, Jan-Erik, Graeme A MacGilchrist, Rebecca L Beadling, Stephen M Griffies, John P Krasting, and Paul J Durack, March 2023: Revisiting Interior Water Mass Responses to Surface Forcing Changes and the Subsequent Effects on Overturning in the Southern Ocean. Journal of Geophysical Research: Oceans, 128(3), DOI:10.1029/2022JC019105. Abstract
Two coupled climate models, differing primarily in horizontal resolution and treatment of mesoscale eddies, were used to assess the impact of perturbations in wind stress and Antarctic ice sheet (AIS) melting on the Southern Ocean meridional overturning circulation (SO MOC), which plays an important role in global climate regulation. The largest impact is found in the SO MOC lower limb, associated with the formation of Antarctic Bottom Water (AABW), which in both models is enhanced by wind and weakened by AIS meltwater perturbations. Even though both models under the AIS melting perturbation show similar AABW transport reductions of 4–5 Sv (50%–60%), the volume deflation of AABW south of 30°S is four times greater in the higher resolution simulation (−20 vs. −5 Sv). Water mass transformation (WMT) analysis reveals that surface-forced dense water formation on the Antarctic shelf is absent in the higher resolution and reduced by half in the lower resolution model in response to the increased AIS melting. However, the decline of the AABW volume (and its inter-model difference) far exceeds the surface-forced WMT changes alone, which indicates that the divergent model responses arise from interactions between changes in surface forcing and interior mixing processes. This model divergence demonstrates an important source of uncertainty in climate modeling, and indicates that accurate shelf processes together with scenarios accounting for AIS melting are necessary for robust projections of the deep ocean's response to anthropogenic forcing.
We use two coupled climate models, GFDL-CM4 and GFDL-ESM4, to investigate the physical response of the Southern Ocean to changes in surface wind stress, Antarctic meltwater, and the combined forcing of the two in a pre-industrial control simulation. The meltwater cools the ocean surface in all regions except the Weddell Sea, where the wind stress warms the near-surface layer. The limited sensitivity of the Weddell Sea surface layer to the meltwater is due to the spatial distribution of the meltwater fluxes, regional bathymetry, and large-scale circulation patterns. The meltwater forcing dominates the Antarctic shelf response and the models yield strikingly different responses along West Antarctica. The disagreement is attributable to the mean-state representation and meltwater-driven acceleration of the Antarctic Slope Current (ASC). In CM4, the meltwater is efficiently trapped on the shelf by a well resolved, strong, and accelerating ASC which isolates the West Antarctic shelf from warm offshore waters, leading to strong subsurface cooling. In ESM4, a weaker and diffuse ASC allows more meltwater to escape to the open ocean, the West Antarctic shelf does not become isolated, and instead strong subsurface warming occurs. The CM4 results suggest a possible negative feedback mechanism that acts to limit future melting, while the ESM4 results suggest a possible positive feedback mechanism that acts to accelerate melt. Our results demonstrate the strong influence the ASC has on governing changes along the shelf, highlighting the importance of coupling interactive ice sheet models to ocean models that can resolve these dynamical processes.
Ocean acidification is a consequence of the absorption of anthropogenic carbon emissions and it profoundly impacts marine life. Arctic regions are particularly vulnerable to rapid pH changes due to low ocean buffering capacities and high stratification. Here, an unsupervised machine learning methodology is applied to simulations of surface Arctic acidification from two state-of-the-art coupled climate models. We identify four sub-regions whose boundaries are influenced by present-day and projected sea ice patterns. The regional boundaries are consistent between the models and across lower (SSP2-4.5) and higher (SSP5-8.5) carbon emissions scenarios. Stronger trends toward corrosive surface waters in the central Arctic Ocean are driven by early summer warming in regions of annual ice cover and late summer freshening in regions of perennial ice cover. Sea surface salinity and total alkalinity reductions dominate the Arctic pH changes, highlighting the importance of objective sub-regional identification and subsequent analysis of surface water mass properties.
The El Niño-Southern Oscillation (ENSO) strongly influences phytoplankton in the tropical Pacific, with El Niño conditions suppressing productivity in the equatorial Pacific (EP) and placing nutritional stresses on marine ecosystems. The Geophysical Fluid Dynamics Laboratory's (GFDL) Earth System Model version 4.1 (ESM4.1) captures observed ENSO-chlorophyll patterns (r = 0.57) much better than GFDL's previous ESM2M (r = 0.23). Most notably, the observed post-El Niño “chlorophyll rebound” is substantially improved in ESM4.1 (r = 0.52). We find that an anomalous increase in iron propagation from western Pacific (WP) subsurface to the cold tongue via the equatorial undercurrent (EUC) and subsequent post-El Niño surfacing, unresolved in ESM2M, is the primary driver of chlorophyll rebound. We also find that this chlorophyll rebound is augmented by high post-El Niño dust-iron deposition anomalies in the eastern EP. This post-El Niño chlorophyll rebound provides a previously unrecognized source of marine ecosystem resilience independent from the La Niña that sometimes follows.
Climate models of varying complexity have been used for decades to investigate the impact of mountains on the atmosphere and surface climate. Here, the impact of removing the continental topography on the present-day ocean climate is investigated using three different climate models spanning multiple generations. An idealized study is performed where all present-day land surface topography is removed and the equilibrium change in the oceanic mean state with and without the mountains is studied. When the mountains are removed, changes found in all three models include a weakening of the Atlantic meridional overturning circulation and associated SST cooling in the subpolar North Atlantic. The SSTs also warm in all the models in the western North Pacific Ocean associated with a northward shift of the atmospheric jet and the Kuroshio. In the ocean interior, the magnitude of the temperature and salinity response to removing the mountains is relatively small and the sign and magnitude of the changes generally vary among the models. These different interior ocean responses are likely related to differences in the mean state of the control integrations due to differences in resolution and associated subgrid-scale mixing parameterizations. Compared to the results from 4xCO2 simulations, the interior ocean temperature changes caused by mountain removal are relatively small; however, the oceanic circulation response and Northern Hemisphere near-surface temperature changes are of a similar magnitude to the response to such radiative forcing changes.
Vaittinada Ayar, Pradeebane, Laurent Bopp, James R Christian, Tatiana Ilyina, John P Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra, July 2022: Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario. Earth System Dynamics, 13(3), DOI:10.5194/esd-13-1097-20221097-1118. Abstract
The El Niño–Southern Oscillation (ENSO) widely modulates the global carbon cycle. More specifically, it alters the net uptake of carbon in the tropical ocean. Indeed, over the tropical Pacific less carbon is released by oceans during El Niño, while the opposite is the case for La Niña. Here, the skill of Earth system models (ESMs) from the latest Coupled Model Intercomparison Project (CMIP6) to simulate the observed tropical Pacific CO2 flux variability in response to ENSO is assessed. The temporal amplitude and spatial extent of CO2 flux anomalies vary considerably among models, while the surface temperature signals of El Niño and La Niña phases are generally well represented. Under historical conditions followed by the high-warming Shared Socio-economic Pathway (SSP5-8.5) scenarios, about half the ESMs simulate a reversal in ENSO–CO2 flux relationship. This gradual shift, which occurs as early as the first half of the 21st century, is associated with a high CO2-induced increase in the Revelle factor that leads to stronger sensitivity of partial pressure of CO2 (pCO2) to changes in surface temperature between ENSO phases. At the same time, uptake of anthropogenic CO2 substantially increases upper-ocean dissolved inorganic carbon (DIC) concentrations (reducing its vertical gradient in the thermocline) and weakens the ENSO-modulated surface DIC variability. The response of the ENSO–CO2 flux relationship to future climate change is sensitive to the contemporary mean state of the carbonate ion concentration in the tropics. We present an emergent constraint between the simulated contemporary carbonate concentration with the projected cumulated CO2 fluxes. Models that simulate shifts in the ENSO–CO2 flux relationship simulate positive bias in surface carbonate concentrations.
July 2019 saw record-breaking wildfires burning 3,600 km2 in Alaska. The GFDL Earth system model indicates a threefold increased risk of Alaska’s
extreme fires during recent decades due to primarily anthropogenic ignition and secondarily climate-induced biofuel abundance.
Arora, Vivek, A Katavouta, R G Williams, C Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, P Cadule, Matthew A Chamberlain, James R Christian, Christine Delire, R A Fisher, Tomohiro Hajima, Tatiana Ilyina, E Joetzjer, M Kawamiya, Charles D Koven, and John P Krasting, et al., August 2020: Carbon-concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to CMIP5 models. Biogeosciences, 17(16), DOI:10.5194/bg-17-4173-2020. Abstract
Results from the fully-, biogeochemically-, and radiatively-coupled simulations in which CO2 increases at a rate of 1 % per year (1pctCO2) from its pre-industrial value are analyzed to quantify the magnitude of two feedback parameters which characterize the coupled carbon-climate system. These feedback parameters quantify the response of ocean and terrestrial carbon pools to changes in atmospheric CO2 concentration and the resulting change in global climate. The results are based on eight comprehensive Earth system models from the fifth Coupled Model Intercomparison Project (CMIP5) and eleven models from the sixth CMIP (CMIP6). The comparison of model results from two CMIP phases shows that, for both land and ocean, the model mean values of the feedback parameters and their multi-model spread has not changed significantly across the two CMIP phases. The absolute values of feedback parameters are lower for land with models that include a representation of nitrogen cycle. The sensitivity of feedback parameters to the three different ways in which they may be calculated is shown and, consistent with existing studies, the most relevant definition is that calculated using results from the fully- and biogeochemically-coupled configurations. Based on these two simulations simplified expressions for the feedback parameters are obtained when the small temperature change in the biogeochemically-coupled simulation is ignored. Decomposition of the terms of these simplified expressions for the feedback parameters allows identification of the reasons for differing responses among ocean and land carbon cycle models.
We compare equilibrium climate sensitivity (ECS) estimates from pairs of long (≥800‐year) control and abruptly quadrupled CO2 simulations with shorter (150‐ and 300‐year) coupled atmosphere‐ocean simulations and slab ocean models (SOMs). Consistent with previous work, ECS estimates from shorter coupled simulations based on annual averages for years 1–150 underestimate those from SOM (−8% ± 13%) and long (−14% ± 8%) simulations. Analysis of only years 21–150 improved agreement with SOM (−2% ± 14%) and long (−8% ± 10%) estimates. Use of pentadal averages for years 51–150 results in improved agreement with long simulations (−4% ± 11%). While ECS estimates from current generation U.S. models based on SOM and coupled annual averages of years 1–150 range from 2.6°C to 5.3°C, estimates based longer simulations of the same models range from 3.2°C to 7.0°C. Such variations between methods argues for caution in comparison and interpretation of ECS estimates across models.
We describe the baseline coupled model configuration and simulation characteristics of GFDL's Earth System Model Version 4.1 (ESM4.1), which builds on component and coupled model developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation contributing to the sixth phase of the Coupled Model Intercomparison Project. In contrast with GFDL's CM4.0 development effort that focuses on ocean resolution for physical climate, ESM4.1 focuses on comprehensiveness of Earth system interactions. ESM4.1 features doubled horizontal resolution of both atmosphere (2° to 1°) and ocean (1° to 0.5°) relative to GFDL's previous‐generation coupled ESM2‐carbon and CM3‐chemistry models. ESM4.1 brings together key representational advances in CM4.0 dynamics and physics along with those in aerosols and their precursor emissions, land ecosystem vegetation and canopy competition, and multiday fire; ocean ecological and biogeochemical interactions, comprehensive land‐atmosphere‐ocean cycling of CO2, dust and iron, and interactive ocean‐atmosphere nitrogen cycling are described in detail across this volume of JAMES and presented here in terms of the overall coupling and resulting fidelity. ESM4.1 provides much improved fidelity in CO2 and chemistry over ESM2 and CM3, captures most of CM4.0's baseline simulations characteristics, and notably improves on CM4.0 in (1) Southern Ocean mode and intermediate water ventilation, (2) Southern Ocean aerosols, and (3) reduced spurious ocean heat uptake. ESM4.1 has reduced transient and equilibrium climate sensitivity compared to CM4.0. Fidelity concerns include (1) moderate degradation in sea surface temperature biases, (2) degradation in aerosols in some regions, and (3) strong centennial scale climate modulation by Southern Ocean convection.
Simulation of coupled carbon‐climate requires representation of ocean carbon cycling, but the computational burden of simulating the dozens of prognostic tracers in state‐of‐the‐art biogeochemistry ecosystem models can be prohibitive. We describe a six‐tracer biogeochemistry module of steady‐state phytoplankton and zooplankton dynamics in Biogeochemistry with Light, Iron, Nutrients and Gas (BLING version 2) with particular emphasis on enhancements relative to the previous version and evaluate its implementation in Geophysical Fluid Dynamics Laboratory's (GFDL) fourth‐generation climate model (CM4.0) with ¼° ocean. Major geographical and vertical patterns in chlorophyll, phosphorus, alkalinity, inorganic and organic carbon, and oxygen are well represented. Major biases in BLINGv2 include overly intensified production in high‐productivity regions at the expense of productivity in the oligotrophic oceans, overly zonal structure in tropical phosphorus, and intensified hypoxia in the eastern ocean basins as is typical in climate models. Overall, while BLINGv2 structural limitations prevent sophisticated application to plankton physiology, ecology, or biodiversity, its ability to represent major organic, inorganic, and solubility pumps makes it suitable for many coupled carbon‐climate and biogeochemistry studies including eddy interactions in the ocean interior. We further overview the biogeochemistry and circulation mechanisms that shape carbon uptake over the historical period. As an initial analysis of model historical and idealized response, we show that CM4.0 takes up slightly more anthropogenic carbon than previous models in part due to enhanced ventilation in the absence of an eddy parameterization. The CM4.0 biogeochemistry response to CO2 doubling highlights a mix of large declines and moderate increases consistent with previous models.
This contribution describes the ocean biogeochemical component of the Geophysical Fluid Dynamics Laboratory's Earth System Model 4.1 (GFDL‐ESM4.1), assesses GFDL‐ESM4.1's capacity to capture observed ocean biogeochemical patterns, and documents its response to increasing atmospheric CO2. Notable differences relative to the previous generation of GFDL ESM's include enhanced resolution of plankton food web dynamics, refined particle remineralization, and a larger number of exchanges of nutrients across Earth system components. During model spin‐up, the carbon drift rapidly fell below the 10 Pg C per century equilibration criterion established by the Coupled Climate‐Carbon Cycle Model Intercomparison Project (C4MIP). Simulations robustly captured large‐scale observed nutrient distributions, plankton dynamics, and characteristics of the biological pump. The model overexpressed phosphate limitation and open ocean hypoxia in some areas but still yielded realistic surface and deep carbon system properties, including cumulative carbon uptake since preindustrial times and over the last decades that is consistent with observation‐based estimates. The model's response to the direct and radiative effects of a 200% atmospheric CO2 increase from preindustrial conditions (i.e., years 101–120 of a 1% CO2 yr−1 simulation) included (a) a weakened, shoaling organic carbon pump leading to a 38% reduction in the sinking flux at 2,000 m; (b) a two‐thirds reduction in the calcium carbonate pump that nonetheless generated only weak calcite compensation on century time‐scales; and, in contrast to previous GFDL ESMs, (c) a moderate reduction in global net primary production that was amplified at higher trophic levels. We conclude with a discussion of model limitations and priority developments.
GFDL's new CM4.0 climate model has high transient and equilibrium climate sensitivities near the middle of the upper half of CMIP5 models. The CMIP5 models have been criticized for excessive sensitivity based on observations of present‐day warming and heat uptake and estimates of radiative forcing. An ensemble of historical simulations with CM4.0 produces warming and heat uptake that are consistent with these observations under forcing that is at the middle of the assessed distribution. Energy budget‐based methods for estimating sensitivities based on these quantities underestimate CM4.0's sensitivities when applied to its historical simulations. However, we argue using a simple attribution procedure that CM4.0's warming evolution indicates excessive transient sensitivity to greenhouse gases. This excessive sensitivity is offset prior to recent decades by excessive response to aerosol and land use changes.
We document the configuration and emergent simulation features from the Geophysical Fluid Dynamics Laboratory (GFDL) OM4.0 ocean/sea‐ice model. OM4 serves as the ocean/sea‐ice component for the GFDL climate and Earth system models. It is also used for climate science research and is contributing to the Coupled Model Intercomparison Project version 6 Ocean Model Intercomparison Project (CMIP6/OMIP). The ocean component of OM4 uses version 6 of the Modular Ocean Model (MOM6) and the sea‐ice component uses version 2 of the Sea Ice Simulator (SIS2), which have identical horizontal grid layouts (Arakawa C‐grid). We follow the Coordinated Ocean‐sea ice Reference Experiments (CORE) protocol to assess simulation quality across a broad suite of climate relevant features. We present results from two versions differing by horizontal grid spacing and physical parameterizations: OM4p5 has nominal 0.5° spacing and includes mesoscale eddy parameterizations and OM4p25 has nominal 0.25° spacing with no mesoscale eddy parameterization.
MOM6 makes use of a vertical Lagrangian‐remap algorithm that enables general vertical coordinates. We show that use of a hybrid depth‐isopycnal coordinate reduces the mid‐depth ocean warming drift commonly found in pure z* vertical coordinate ocean models. To test the need for the mesoscale eddy parameterization used in OM4p5, we examine the results from a simulation that removes the eddy parameterization. The water mass structure and model drift are physically degraded relative to OM4p5, thus supporting the key role for a mesoscale closure at this resolution.
Eyring, Veronika, Peter Cox, G M Flato, Peter J Gleckler, G Abramowitz, P Caldwell, William D Collins, B K Gier, A Hall, F Hoffman, George C Hurtt, Alexandra Jahn, C Jones, Stephen A Klein, and John P Krasting, et al., February 2019: Taking climate model evaluation to the next level. Nature Climate Change, 9(2), DOI:10.1038/s41558-018-0355-y. Abstract
Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate projections for a given future scenario. Owing to different model performances against observations and the lack of independence among models, there is now evidence that giving equal weight to each available model projection is suboptimal. This Perspective discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most relevant to climate projections, and advanced methods for model weighting. These approaches are needed to distil the most credible information on regional climate changes, impacts, and risks for stakeholders and policy-makers.
Findell, Kirsten L., P W Keys, R J van der Ent, Benjamin R Lintner, Alexis Berg, and John P Krasting, November 2019: Rising Temperatures Increase Importance of Oceanic Evaporation as a Source for Continental Precipitation. Journal of Climate, 32(22), DOI:10.1175/JCLI-D-19-0145.1. Abstract
Understanding vulnerabilities of continental precipitation to changing climatic conditions is of critical importance to society at large. Terrestrial precipitation is fed by moisture originating as evaporation from oceans and from recycling of water evaporated from continental sources. In this study, continental precipitation and evaporation recycling processes in the earth system model GFDL-ESM2G are shown to be consistent with estimates from two different reanalysis products. The GFDL-ESM2G simulations of historical and future climate also show that values of continental moisture recycling ratios were systematically higher in the past and will be lower in the future. Global mean recycling ratios decrease 2-3% with each degree of temperature increase, indicating increased importance of oceanic evaporation for continental precipitation. Theoretical arguments for recycling changes stem from increasing atmospheric temperatures and evaporative demand that drive more rapid increases in evaporation over oceans than over land as a result of terrestrial soil moisture limitations. Simulated recycling changes are demonstrated to be consistent with these theoretical arguments. A simple prototype describing this theory effectively captures the zonal mean behavior of GFDL-ESM2G. Implications of such behavior are particularly serious in rain-fed agricultural regions where crop yields will become increasingly soil moisture limited.
We describe GFDL's CM4.0 physical climate model, with emphasis on those aspects that may be of particular importance to users of this model and its simulations. The model is built with the AM4.0/LM4.0 atmosphere/land model and OM4.0 ocean model. Topics include the rationale for key choices made in the model formulation, the stability as well as drift of the pre‐industrial control simulation, and comparison of key aspects of the historical simulations with observations from recent decades. Notable achievements include the relatively small biases in seasonal spatial patterns of top‐of‐atmosphere fluxes, surface temperature, and precipitation; reduced double Intertropical Convergence Zone bias; dramatically improved representation of ocean boundary currents; a high quality simulation of climatological Arctic sea ice extent and its recent decline; and excellent simulation of the El Niño‐Southern Oscillation spectrum and structure. Areas of concern include inadequate deep convection in the Nordic Seas; an inaccurate Antarctic sea ice simulation; precipitation and wind composites still affected by the equatorial cold tongue bias; muted variability in the Atlantic Meridional Overturning Circulation; strong 100 year quasi‐periodicity in Southern Ocean ventilation; and a lack of historical warming before 1990 and too rapid warming thereafter due to high climate sensitivity and strong aerosol forcing, in contrast to the observational record. Overall, CM4.0 scores very well in its fidelity against observations compared to the Coupled Model Intercomparison Project Phase 5 generation in terms of both mean state and modes of variability and should prove a valuable new addition for analysis across a broad array of applications.
Oceanic heat uptake (OHU) is a significant source of uncertainty in both the transient and equilibrium responses to increasing the planetary radiative forcing. OHU differs among climate models and is related in part to their representation of vertical and lateral mixing. This study examines the role of ocean model formulation – specifically the choice of vertical coordinate and strength of background diapycnal diffusivity (Kd) – in the millennial-scale near-equilibrium climate response to a quadrupling of atmospheric CO2. Using two fully-coupled Earth System Models (ESMs) with nearly identical atmosphere, land, sea ice, and biogeochemical components, it is possible to independently configure their ocean model components with different formulations and produce similar near-equilibrium climate responses. The SST responses are similar between the two models (r2 = 0.75, global average ∼ 4.3 °C) despite their initial pre-industrial climate mean states differing by 0.4 °C globally. The surface and interior responses of temperature and salinity are also similar between the two models. However, the Atlantic Meridional Overturning Circulation (AMOC) responses are different between the two models, and the associated differences in ventilation and deep water formation have an impact on the accumulation of dissolved inorganic carbon in the ocean interior. A parameter sensitivity analysis demonstrates that increasing the amount of Kd produces very different near-equilibrium climate responses within a given model. These results suggest that the impact of the ocean vertical coordinate on the climate response is small relative to the representation of sub-gridscale mixing.
To explore the mechanisms involved in the global ocean circulation response to the shoaling and closure of the Central American Seaway (CAS), we performed a suite of sensitivity experiments using the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM), GFDL‐ESM 2G, varying only the seaway widths and sill depths. Changes in large‐scale transport, global ocean mean state, and deep‐ocean circulation in all simulations are driven by the direct impacts of the seaway on global mass, heat and salt transports. Net mass transport through the seaway into the Caribbean is 20.5‐23.1 Sv with a deep CAS, but only 14.1 Sv for the wide, shallow CAS. Seaway transport originates from the Antarctic Circumpolar Current in the Pacific and rejoins it in the South Atlantic, reducing the Indonesian Throughflow and transporting heat and salt southward into the South Atlantic, in contrast to present‐day and previous CAS simulations. The increased southward salt transport increases the large‐scale upper ocean density, and the freshening and warming from the changing ocean transports decreases the intermediate and deep‐water density. The new ocean circulation pathway traps heat in the Southern Hemisphere oceans and reduces the northern extent of Antarctic Bottom Water penetration in the Atlantic, strengthening and deepening Atlantic meridional overturning, in contrast to previous studies. In all simulations, the seaway has a profound effect on the global ocean mean state and alters deep‐water mass properties and circulation in the Atlantic, Indian and Pacific basins, with implications for changing deep‐water circulation as a possible driver for changes in long‐term climate.
In this two-part paper, a description is provided of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). This version, with roughly 100km horizontal resolution and 33 levels in the vertical, contains an aerosol model that generates aerosol fields from emissions and a “light” chemistry mechanism designed to support the aerosol model but with prescribed ozone. In Part I, the quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode – with prescribed sea surface temperatures (SSTs) and sea ice distribution – is described and compared with previous GFDL models and with the CMIP5 archive of AMIP simulations. The model's Cess sensitivity (response in the top-of-atmosphere radiative flux to uniform warming of SSTs) and effective radiative forcing are also presented. In Part II, the model formulation is described more fully and key sensitivities to aspects of the model formulation are discussed, along with the approach to model tuning.
In Part II of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part I. Part II provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model’s near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2–3 years. In the tropics,long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model’s novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.
Two state-of-the-art Earth System Models (ESMs) were used in an idealized experiment to explore the role of mountains in shaping Earth’s climate system. Similar to previous studies, removing mountains from both ESMs results in the winds becoming more zonal, and weaker Indian and Asian monsoon circulations. However, there are also broad changes to the Walker circulation and the El Niño Southern Oscillation (ENSO). Without orography, convection moves across the entire equatorial Indo-Pacific basin on interannual timescales. The ENSO has a stronger amplitude, lower frequency and increased regularity. A wider equatorial wind zone and changes to equatorial wind stress curl result in a colder cold tongue and a steeper equatorial thermocline across the Pacific basin during La Niña years. Anomalies associated with ENSO warm events are larger without mountains, and have greater impact on the mean tropical climate than when mountains are present. Without mountains the centennial-mean Pacific Walker circulation weakens in both models by ~45%, but the strength of the mean Hadley circulation changes by <2%. Changes in the Walker circulation in these experiments can be explained by the large spatial excursions of atmospheric deep convection on interannual timescales. These results suggest that mountains are an important control on the large-scale tropical circulation, impacting ENSO dynamics and the Walker circulation, but have little impact on the strength of the Hadley circulation.
Eyring, Veronika, M Righi, A Lauer, M Evaldsson, S Wenzel, C Jones, A Anav, O Andrews, I Cionni, E L Davin, Clara Deser, C Ehbrecht, Pierre Friedlingstein, Peter J Gleckler, K-D Gottschaldt, S Hagemann, M Juckes, S Kindermann, and John P Krasting, et al., May 2016: ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geoscientific Model Development, 9(5), DOI:10.5194/gmd-9-1747-2016. Abstract
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology–climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within CMIP and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user.
Griffies, Stephen M., Gokhan Danabasoglu, Paul J Durack, Alistair Adcroft, V Balaji, C Böning, Eric P Chassignet, Enrique N Curchitser, Julie Deshayes, H Drange, Baylor Fox-Kemper, Peter J Gleckler, Jonathan M Gregory, Helmuth Haak, Robert Hallberg, Helene T Hewitt, David M Holland, Tatiana Ilyina, J H Jungclaus, Y Komuro, John P Krasting, William G Large, S J Marsland, S Masina, Trevor J McDougall, A J George Nurser, James C Orr, Anna Pirani, Fangli Qiao, Ronald J Stouffer, Karl E Taylor, A M Treguier, Hiroyuki Tsujino, P Uotila, M Valdivieso, Michael Winton, and Stephen G Yeager, September 2016: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 9(9), DOI:10.5194/gmd-9-3231-2016. Abstract
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.
Thermal expansion of the ocean in response to warming is an important component of historical sea-level rise1. Observational studies show that the Atlantic and Southern oceans are warming faster than the Pacific Ocean2, 3, 4, 5. Here we present simulations using a numerical atmospheric-ocean general circulation model with an interactive carbon cycle to evaluate the impact of carbon emission rates, ranging from 2 to 25 GtC yr−1, on basin-scale ocean heat uptake and sea level. For simulations with emission rates greater than 5 GtC yr−1, sea-level rise is larger in the Atlantic than Pacific Ocean on centennial timescales. This basin-scale asymmetry is related to the shorter flushing timescales and weakening of the overturning circulation in the Atlantic. These factors lead to warmer Atlantic interior waters and greater thermal expansion. In contrast, low emission rates of 2 and 3 GtC yr−1 will cause relatively larger sea-level rise in the Pacific on millennial timescales. For a given level of cumulative emissions, sea-level rise is largest at low emission rates. We conclude that Atlantic coastal areas may be particularly vulnerable to near-future sea-level rise from present-day high greenhouse gas emission rates.
We assess the uptake, transport and storage of oceanic anthropogenic carbon and
heat over the period 1861 to 2005 in a new set of coupled carbon-climate Earth
System models conducted for the fifth Coupled Model Intercomparison Project
(CMIP5), with a particular focus on the Southern Ocean. Simulations show the
Southern Ocean south of 30°S, occupying 30% of global surface ocean area, accounts
for 43 ± 3% (42 ± 5 Pg C) of anthropogenic CO2 and 75 ± 22% (23 ± 9 *1022J) of heat
uptake by the ocean over the historical period. Northward transport out of the Southern
Ocean is vigorous, reducing the storage to 33 ± 6 Pg anthropogenic carbon and 12 ± 7
*1022J heat in the region. The CMIP5 models as a class tend to underestimate the
observational-based global anthropogenic carbon storage, but simulate trends in global
ocean heat storage over the last fifty years within uncertainties of observation-based
estimates. CMIP5 models suggest global and Southern Ocean CO2 uptake have been
largely unaffected by recent climate variability and change. Anthropogenic carbon and
heat storage show a common broad-scale pattern of change, but ocean heat storage is
more structured than ocean carbon storage. Our results highlight the significance of
the Southern Ocean for the global climate and as the region where models differ the
most in representation of anthropogenic CO2 and in particular heat uptake.
Ding, Y, J A Carton, G A Chepurin, Georgiy Stenchikov, A Robock, Lori T Sentman, and John P Krasting, September 2014: Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. Journal of Geophysical Research: Oceans, 119(9), DOI:10.1002/2013JC009780. Abstract
We examine the oceanic impact of large tropical volcanic eruptions as they appear in ensembles of historical simulations from eight Coupled Model Intercomparison Project Phase 5 models. These models show a response that includes lowering of global average sea surface temperature by 0.1-0.3 K, comparable to the observations. They show enhancement of Arctic ice cover in the years following major volcanic eruptions, with long-lived temperature anomalies extending to the mid-depth and deep ocean on decadal to centennial timescales. Regional ocean responses vary, although there is some consistent hemispheric asymmetry associated with the hemisphere in which the eruption occurs. Temperature decreases and salinity increases contribute to an increase in the density of surface water and an enhancement in the overturning circulation of the North Atlantic Ocean following these eruptions. The strength of this overturning increase varies considerably from model to model and is correlated with the background variability of overturning in each model. Any cause/effect relation between eruptions and the phase of El Niño is weak.
The robustness of Transient Climate Response to cumulative Emissions (TCRE) is tested using an Earth System Model (Geophysical Fluid Dynamics Laboratory-ESM2G) forced with seven different constant rates of carbon emissions (2 GtC/yr to 25 GtC/yr), including low emission rates that have been largely unexplored in previous studies. We find the range of TCRE resulting from varying emission pathways to be 0.76 to 1.04°C/TtC. This range, however, is small compared to the uncertainty resulting from varying model physics across the Fifth Coupled Model Intercomparison Project ensemble. TCRE has a complex relationship with emission rates; TCRE is largest for both low (2 GtC/yr) and high (25 GtC/yr) emissions and smallest for present-day emissions (5–10 GtC/yr). Unforced climate variability hinders precise estimates of TCRE for periods shorter than 50 years for emission rates near or smaller than present day values. Even if carbon emissions would stop, the prior emissions pathways will affect the future climate responses.
We describe carbon system formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate good climate fidelity as described in Part I while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences in simulation characteristics of these two models are described. Due to differences in oceanic ventilation rates (Part I) ESM2M has a stronger biological carbon pump but weaker northward implied atmospheric CO2 transport than ESM2G. The major advantages of ESM2G over ESM2M are: improved representation of surface chlorophyll in the Atlantic and Indian Oceans and thermocline nutrients and oxygen in the North Pacific. Improved tree mortality parameters in ESM2G produced more realistic carbon accumulation in vegetation pools. The major advantages of ESM2M over ESM2G are reduced nutrient and oxygen biases in the Southern and Tropical Oceans.
Two comprehensive Earth System Models, identical apart from their oceanic components, are used to estimate the uncertainty in projections of 21st century sea level rise due to representational choices in ocean physical formulation. Most prominent among the formulation differences is that one (ESM2M) uses a traditional z-coordinate ocean model, while the other (ESM2G) uses an isopycnal-coordinate ocean. As evidence of model fidelity, differences in 20th century global-mean steric sea level rise are not statistically significant between either model and observed trends. However, differences between the two models’ 21st century projections are systematic and both statistically and climatically significant. By 2100, ESM2M exhibits 18% higher global steric sea level rise than ESM2G for all four radiative forcing scenarios (28 to 49 mm higher), despite having similar changes between the models in the near-surface ocean for several scenarios. These differences arise primarily from the vertical extent over which heat is taken up and the total heat uptake by the models (9% more in ESM2M than ESM2G). The fact that the spun-up control state of ESM2M is warmer than ESM2G also contributes, by giving thermal expansion coefficients that are about 7% larger in ESM2M than ESM2G. The differences between these models provide a direct estimate of the sensitivity of 21st century sea level rise to ocean model formulation, and, given the span of these models across the observed volume of the ventilated thermocline, may also approximate the sensitivities expected from uncertainties in the characterization of interior ocean physical processes.
Using simulations performed with 18 coupled atmosphere-ocean global climate models from the CMIP5 project, projections of Northern Hemisphere snowfall under the RCP4.5 scenario are analyzed for the period 2006-2100. These models perform well in simulating 20th century snowfall, although there is a positive bias in many regions. Annual snowfall is projected to decrease across much of the Northern Hemisphere during the 21st century, with increases projected at higher latitudes. On a seasonal basis, the transition zone between negative and positive snowfall trends corresponds approximately to the -10 °C isotherm of the late 20th century mean surface air temperature such that positive trends prevail in winter over large regions of Eurasia and North America. Redistributions of snowfall throughout the entire snow season are projected to occur – even in locations where there is little change in annual snowfall. Changes in the fraction of precipitation falling as snow contribute to decreases in snowfall across most Northern Hemisphere regions, while changes in total precipitation typically contribute to increases in snowfall. A signal-to-noise analysis reveals that the projected changes in snowfall, based on the RCP4.5 scenario, are likely to become apparent during the 21st century for most locations in the Northern Hemisphere. The snowfall signal emerges more slowly than the temperature signal, suggesting that changes in snowfall are not likely to be early indicators of regional climate change.
Previous studies have demonstrated the importance of enhanced
vegetation growth under future elevated atmospheric CO2 for
21st century climate warming. Surprisingly no study has completed
an analogous assessment for the historical period, during
which emissions of greenhouse gases increased rapidly and landuse
changes (LUC) dramatically altered terrestrial carbon sources
and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive
Earth System Model ESM2G and a reconstruction of
the LUC, we estimate that enhanced vegetation growth has lowered
the historical atmospheric CO2 concentration by 85 ppm,
avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate
that without enhanced vegetation growth the total residual terrestrial
carbon flux (i.e., the net land flux minus LUC flux) would be
a source of 65–82 Gt of carbon (GtC) to atmosphere instead of the
historical residual carbon sink of 186–192 GtC, a carbon saving of
251–274 GtC.
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.