Extreme heat under global warming is a concerning issue for the growing tropical population. However, model projections of extreme temperatures, a widely used metric for extreme heat, are uncertain on regional scales. In addition, humidity needs to be taken into account to estimate the health impact of extreme heat. Here we show that an integrated temperature–humidity metric for the health impact of heat, namely, the extreme wet-bulb temperature (TW), is controlled by established atmospheric dynamics and thus can be robustly projected on regional scales. For each 1 °C of tropical mean warming, global climate models project extreme TW (the annual maximum of daily mean or 3-hourly values) to increase roughly uniformly between 20° S and 20° N latitude by about 1 °C. This projection is consistent with theoretical expectation based on tropical atmospheric dynamics, and observations over the past 40 years, which gives confidence to the model projection. For a 1.5 °C warmer world, the probable (66% confidence interval) increase of regional extreme TW is projected to be 1.33–1.49 °C, whereas the uncertainty of projected extreme temperatures is 3.7 times as large. These results suggest that limiting global warming to 1.5 °C will prevent most of the tropics from reaching a TW of 35 °C, the limit of human adaptation.
We show that in the tropics, tropical atmospheric dynamics force the subcloud moist static energy (MSE) over land and ocean to be very similar in, and only in, regions of deep convection. Using observed rainfall as a proxy for convection and reanalysis data to calculate MSE, we show that subcloud MSE in the non‐convective regions may differ substantially between land and ocean but is uniform across latitudes in convective regions even on a daily timescale. This result holds also in CMIP5 model simulations of past cold and future warm climates. Furthermore, the distribution of rainfall amount in subcloud MSE is very similar over land and ocean with the peak at 343 J/g and a half width at half maximum of 3 J/g. Our results demonstrate that the horizontally uniform free tropospheric temperature forces the highest subcloud MSE values to be similar over land and ocean.
The linearity of global‐mean outgoing longwave radiation (OLR) with surface temperature is a basic assumption in climate dynamics. This linearity manifests in global climate models, which robustly produce a global‐mean longwave clear‐sky (LWCS) feedback of 1.9 W/m2/K, consistent with idealized single‐column models (Koll & Cronin, 2018, https//:doi.org/10.1073/pnas.1809868115). However, there is considerable spatial variability in the LWCS feedback, including negative values over tropical oceans (known as the “super‐greenhouse effect”) which are compensated for by larger values in the subtropics/extratropics. Therefore, it is unclear how the idealized single‐column results are relevant for the global‐mean LWCS feedback in comprehensive climate models. Here we show with a simple analytical theory and model output that the compensation of this spatial variability to produce a robust global‐mean feedback can be explained by two facts: (1) When conditioned upon free‐tropospheric column relative humidity (RH), the LWCS feedback is independent of RH, and (2) the global histogram of free‐tropospheric column RH is largely invariant under warming.
Global climate models consensually predict that tropical rainfall will be distributed more unevenly with global warming, i.e., dry regions or months will get drier and wet regions or months will get wetter. Previous mechanisms such as ``dry‐get‐drier, wet‐get‐wetter", ``rich‐get‐richer", or ``upped‐ante" focus on the spatial pattern of rainfall changes rather than the changes in probability distribution. Here, we present a quantitative explanation of the warming induced probability distribution change of rainfall: Subcloud moist static energy (MSE) gradients are amplified by Clausius‐Clapeyron relationship given roughly uniform warming and constant relative humidity, therefore the present‐day wet regions will become more competitive for convection in a warmer world. Though changes in the atmospheric circulation pattern can enhance rainfall in one place and suppress rainfall in another, our results show that the total effect should be a decrease in the area of active convection even with uniform warming.