Global storm-resolving models (GSRMs) that can explicitly resolve some of deep convection are now being integrated for climate timescales. GSRMs are able to simulate more realistic precipitation distributions relative to traditional Coupled Model Intercomparison Project 6 (CMIP6) models. In this study, we present results from two-year-long integrations of a GSRM developed at Geophysical Fluid Dynamics Laboratory, eXperimental System for High-resolution prediction on Earth-to-Local Domains (X-SHiELD), for the response of precipitation to sea surface temperature warming and an isolated increase in CO2 and compare it to CMIP6 models. At leading order, X-SHiELD's response is within the range of the CMIP6 models. However, a close examination of the precipitation distribution response reveals that X-SHiELD has a different response at lower percentiles and the response of the extreme events are at the lower end of the range of CMIP6 models. A regional decomposition reveals that the difference is most pronounced for midlatitude land, where X-SHiELD shows a lower increase at intermediate percentiles and drying at lower percentiles.
The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model results can build confidence in the existing climate models or highlight important areas for additional research. This GSRM’s climate sensitivity is within the range of conventional climate models, although on the lower end as the result of neutral, rather than amplifying, shortwave feedbacks. Its radiative forcing from carbon dioxide is higher than conventional climate models, and this arises from a bias in climatological clouds and an explicitly simulated high-cloud adjustment. Last, the pattern and magnitude of relative humidity changes, simulated with greater fidelity via explicitly resolving convection, are notably similar to conventional climate models.
Changes in tropical deep convection with global warming are a leading source of uncertainty for future climate projections. A comparison of the responses of active sensor measurements of cloud ice to interannual variability and next-generation global storm-resolving model (also known as k-scale models) simulations to global warming shows similar changes for events with the highest column-integrated ice. The changes reveal that the ice loading decreases outside the most active convection but increases at a rate of several percent per Kelvin surface warming in the most active convection. Disentangling thermodynamic and vertical velocity changes shows that the ice signal is strongly modulated by structural changes of the vertical wind field towards an intensification of strong convective updrafts with warming, suggesting that changes in ice loading are strongly influenced by changes in convective velocities, as well as a path toward extracting information about convective velocities from observations.
Changes in tropical (30 S–30 N) land hydroclimate following CO2-induced global warming are organized according to climatological aridity index (AI) and daily soil moisture (SM) percentiles. The transform from geographical space to this novel process-oriented phase space allows for interpretation of local, daily mechanistic relationships between key hydroclimatic variables in the context of time-mean and/or global-mean energetic constraints and the wet-get-wetter/dry-get-drier paradigm. Results from 16 CMIP models show coherent patterns of change in the AI/SM phase space that are aligned with the established soil-moisture/evapotranspiration regimes. We introduce an active-rain regime as a special case of the energy-limited regime. Rainfall shifts toward larger rain totals in this active-rain regime, with less rain on other days, resulting in an overall SM reduction. Consequently, the regimes where SM constrains evapotranspiration become more frequently occupied, and corresponding hydroclimatic changes align with the position of the critical SM value in the AI/SM phase space.
Intense convection (updrafts exceeding 10 m s−1) plays an essential role in severe weather and Earth's energy balance. Despite its importance, how the global pattern of intense convection changes in response to warmed climates remains unclear, as simulations from traditional climate models are too coarse to simulate intense convection. Here we use a kilometer-scale global storm resolving model (GSRM) and conduct year-long simulations of a control run, forced by analyzed sea surface temperature (SST), and one with a 4 K increase in SST. Comparisons show that the increased SST enhances the frequency of intense convection globally with large spatial and seasonal variations. Changes in the spatial pattern of intense convection are associated with changes in planetary circulation. Increases in the intense convection frequency do not necessarily reflect increases in convective available potential energy. The GSRM results are also compared with previously published traditional climate model projections.
Clear-sky CO2 forcing is known to vary significantly over the globe, but the state dependence that controls this is not well understood. Here we extend the formalism of Wilson and Gea-Banacloche to obtain a quantitatively accurate analytical model for spatially varying instantaneous CO2 forcing, which depends only on surface temperature T s, stratospheric temperature, and column relative humidity (RH). This model shows that CO2 forcing can be considered a swap of surface emission for stratospheric emission, and thus depends primarily on surface–stratosphere temperature contrast. The strong meridional gradient in CO2 forcing is thus largely due to the strong meridional gradient in T s. In the tropics and midlatitudes, however, the presence of H2O modulates the forcing by replacing surface emission with RH-dependent atmospheric emission. This substantially reduces the forcing in the tropics, introduces forcing variations due to spatially varying RH, and sets an upper limit (with respect to T s variations) on CO2 forcing that is reached in the present-day tropics. In addition, we extend our analytical model to the instantaneous tropopause forcing, and find that this forcing depends on T s only, with no dependence on stratospheric temperature. We also analyze the τ = 1 approximation for the emission level and derive an exact formula for the emission level, which yields values closer to τ = 1/2 than to τ = 1.
Extreme heat under global warming is a concerning issue for the growing tropical population. However, model projections of extreme temperatures, a widely used metric for extreme heat, are uncertain on regional scales. In addition, humidity needs to be taken into account to estimate the health impact of extreme heat. Here we show that an integrated temperature–humidity metric for the health impact of heat, namely, the extreme wet-bulb temperature (TW), is controlled by established atmospheric dynamics and thus can be robustly projected on regional scales. For each 1 °C of tropical mean warming, global climate models project extreme TW (the annual maximum of daily mean or 3-hourly values) to increase roughly uniformly between 20° S and 20° N latitude by about 1 °C. This projection is consistent with theoretical expectation based on tropical atmospheric dynamics, and observations over the past 40 years, which gives confidence to the model projection. For a 1.5 °C warmer world, the probable (66% confidence interval) increase of regional extreme TW is projected to be 1.33–1.49 °C, whereas the uncertainty of projected extreme temperatures is 3.7 times as large. These results suggest that limiting global warming to 1.5 °C will prevent most of the tropics from reaching a TW of 35 °C, the limit of human adaptation.
Bolot, Maximilien, and Stephan Fueglistaler, March 2020: Reduction of bias from parameter variance in geophysical data estimation: method and application to ice water content and sedimentation flux estimated from lidar. Journal of the Atmospheric Sciences, 77(3), DOI:10.1175/JAS-D-19-0106.1. Abstract
This paper addresses issues of statistical misrepresentation of the a priori parameters (henceforth called ancillary parameters) used in geophysical data estimation. Parametrizations using ancillary data are frequently needed to derive geophysical data of interest from remote measurements. Empirical fits to the ancillary data that do not preserve the distribution of such data may induce substantial bias. A semi-analytical averaging approach based on Taylor expansion is presented to improve estimated cirrus ice water content and sedimentation flux for a range of volume extinction coefficients retrieved from space-borne lidar observations by CALIOP combined with the estimated distribution of ancillary data from in situ aircraft measurements of ice particle microphysical parameters and temperature. It is shown that, given an idealized distribution of input parameters, the approach performs well against Monte Carlo benchmark predictions. Using examples with idealized distributions at the mean temperature for the tropics at 15 km, it is estimated that the commonly neglected variance observed in in situ measurements of effective diameters may produce a worst-case estimation bias spanning up to a factor of two. For ice sedimentation flux, a similar variance in particle size distributions and extinctions produces a worst-case estimation bias of a factor of nine. The value of the bias is found to be mostly set by the correlation coefficient between extinction and ice effective diameter, which in this test ranged between all possible values. Systematic reporting of variances and covariances in the ancillary data and between data and observed quantities would allow for more accurate observational estimates.
A satellite-based climatology is presented of 9607 mesoscale convective systems (MCSs) that occurred over the central and southeastern United States from 1996-2017. This climatology is constructed with a fully automated algorithm based on their cold cloud shields, as observed from infrared images taken by GOES-East satellites. The geographical, seasonal, and diurnal patterns of MCS frequency are evaluated, as are the frequency distributions and seasonal variability of duration and maximum size. MCS duration and maximum size are found to be strongly correlated, with coefficients greater than 0.7. Although previous literature has sub-classified MCSs based on size and duration, we find no obvious threshold that cleanly categorizes MCSs. The Plains and Deep South are identified as two regional modes of maximum MCS frequency, accounting for 21% and 18% of MCSs, respectively, and these are found to differ in the direction and speed of the MCSs (means of 16 ms−1 and 13 ms−1), their distributions of duration and size (means of 12.2 h, 176000 km2 and 9.6 h, 108000 km2), their initial growth rates (means of 7.6 km2 s−1 and 6.1 km2 s−1) and many aspects of the seasonal cycle. The lifetime patterns of MCS movement and growth are evaluated for the full domain and for the two regional modes. The growth patterns and strong correlation between size and duration allow for a parabolic function to represent the MCS lifecycle quite well in summary statistics. We show that this satellite-based climatology supports previous studies identifying favorable environments for mesoscale convective systems.
The cooling-to-space (CTS) approximation says that the radiative cooling of an atmospheric layer is dominated by that layer’s emission to space, while radiative exchange with layers above and below largely cancel. Though the CTS approximation has been demonstrated empirically and is thus fairly well-accepted, a theoretical justification is lacking. Furthermore, the intuition behind the CTS approximation cannot be universally valid, as the CTS approximation fails in the case of pure radiative equilibrium.
Motivated by this, we investigate the CTS approximation in detail. We frame the CTS approximation in terms of a novel decomposition of radiative flux divergence, which better captures the cancellation of exchange terms. We also derive validity criteria for the CTS approximation, using simple analytical theory. We apply these criteria in the context of both gray gas pure radiative equilibrium (PRE) as well as radiative-convective equilibrium (RCE), to understand how the CTS approximation arises and why it fails in PRE. When applied to realistic gases in RCE, these criteria predict that the CTS approximation should hold well for H2O but less so for CO2, a conclusion we verify with line-by-line radiative transfer calculations. Along the way we also discuss the well-known ‘τ = 1 law’, and its dependence on the choice of vertical coordinate.
Atmospheric radiative cooling is a fundamental aspect of the Earth’s greenhouse effect, and is intrinsically connected to atmospheric motions. At the same time, basic aspects of longwave radiative cooling, such as its characteristic value of 2 K/day, its sharp decline (or ‘kink’) in the upper troposphere, and the large values of CO2 cooling in the stratosphere, are difficult to understand intuitively or estimate with pencil-and-paper. Here we pursue such understanding by building simple spectral (rather than gray) models for clear-sky radiative cooling. We construct these models by combining the cooling-to-space approximation with simplified greenhouse gas spectroscopy and analytical expressions for optical depth, and we validate these simple models with line-by-line calculations.
We find that cooling rates can be expressed as a product of the Planck function, a vertical emissivity gradient, and a characteristic spectral width derived from our simplified spectroscopy. This expression allows for a pencil-and-paper estimate of the 2 K/day tropospheric cooling rate, as well as an explanation of enhanced CO2 cooling rates in the stratosphere. We also link the upper tropospheric kink in radiative cooling to the distribution of H2O absorption coefficients, and from this derive an analytical expression for the kink temperature Tkink ≈ 220 K. A further, ancillary result is that gray models fail to reproduce basic features of atmospheric radiative cooling.
Match, Aaron, and Stephan Fueglistaler, June 2020: Mean flow damping forms the buffer zone of the Quasi-Biennial Oscillation: 1D theory. Journal of the Atmospheric Sciences, 77(6), DOI:10.1175/JAS-D-19-0293.1. Abstract
The quasi-biennial oscillation (QBO) is a descending pattern of alternating easterly and westerly winds in the tropical stratosphere. Upwelling is generally understood to counteract the descent of the QBO. The upwelling hypothesis holds that where upwelling exceeds the intrinsic descent rate of the QBO, the QBO cannot descend and a buffer zone forms. Descent rate models of the QBO, which represent a highly simplified evolution of a QBO wind contour, support the upwelling hypothesis. Here, we show that the upwelling hypothesis and descent rate models only correctly describe buffer zone formation in the absence of wave dissipation below critical levels. When there is wave dissipation below critical levels, the 1D QBO response to upwelling can be either to (1) reform below the upwelling, (2) undergo period-lengthening collapse, or (3) expand a pre-existing buffer zone. The response depends on the location of the upwelling and the lower boundary condition. Mean flow damping always forms a buffer zone. A previous study of reanalyses showed that there is mean flow damping in the buffer zone due to horizontal momentum flux divergence. Therefore, the 1D model implicates lateral terms in buffer zone formation that it cannot self-consistently include.
We show that in the tropics, tropical atmospheric dynamics force the subcloud moist static energy (MSE) over land and ocean to be very similar in, and only in, regions of deep convection. Using observed rainfall as a proxy for convection and reanalysis data to calculate MSE, we show that subcloud MSE in the non‐convective regions may differ substantially between land and ocean but is uniform across latitudes in convective regions even on a daily timescale. This result holds also in CMIP5 model simulations of past cold and future warm climates. Furthermore, the distribution of rainfall amount in subcloud MSE is very similar over land and ocean with the peak at 343 J/g and a half width at half maximum of 3 J/g. Our results demonstrate that the horizontally uniform free tropospheric temperature forces the highest subcloud MSE values to be similar over land and ocean.
The linearity of global‐mean outgoing longwave radiation (OLR) with surface temperature is a basic assumption in climate dynamics. This linearity manifests in global climate models, which robustly produce a global‐mean longwave clear‐sky (LWCS) feedback of 1.9 W/m2/K, consistent with idealized single‐column models (Koll & Cronin, 2018, https//:doi.org/10.1073/pnas.1809868115). However, there is considerable spatial variability in the LWCS feedback, including negative values over tropical oceans (known as the “super‐greenhouse effect”) which are compensated for by larger values in the subtropics/extratropics. Therefore, it is unclear how the idealized single‐column results are relevant for the global‐mean LWCS feedback in comprehensive climate models. Here we show with a simple analytical theory and model output that the compensation of this spatial variability to produce a robust global‐mean feedback can be explained by two facts: (1) When conditioned upon free‐tropospheric column relative humidity (RH), the LWCS feedback is independent of RH, and (2) the global histogram of free‐tropospheric column RH is largely invariant under warming.
Dinh, Tra, and Stephan Fueglistaler, November 2019: On the Causal Relationship between the Moist Diabatic Circulation and Cloud Rapid Adjustment to Increasing CO2. Journal of Advances in Modeling Earth Systems, 11(11), DOI:10.1029/2019MS001853. Abstract
General Circulation Models (GCMs) predict that clouds in the atmosphere rapidly adjust to the radiative perturbation of an abrupt increase in atmospheric CO2 concentration on a short time scale of about 10 days. This rapid adjustment consists of an increase of clouds in the boundary layer and a decrease of clouds in the free troposphere. Our focus is the mechanism for the decrease of clouds in the free troposphere, which is the dominating component of cloud rapid adjustment in most GCMs. We propose that the decrease in clouds in the free troposphere arises from the causal relationship between the moist diabatic circulation and the production of condensates that forms clouds in moist processes. As CO2 concentration increases, tropospheric radiative cooling is reduced, resulting in weakening of the moist diabatic circulation and a decrease in precipitation. As the hydrologic cycle weakens and the moist processes involving phase change of water vapour to form the condensates in the atmosphere lessen, the mass of cloud condensates decreases. This decrease in cloud condensates can be predicted from the decrease in the radiative subsidence mass flux, which is a metric for the strength of the moist diabatic circulation in the free troposphere.
Fueglistaler, Stephan, August 2019: Observational evidence for two modes of coupling between sea surface temperatures, tropospheric temperature profile and shortwave cloud radiative effect in the tropics. Geophysical Research Letters, 46(16), DOI:10.1029/2019GL083990. Abstract
Tropical average shortwave cloud radiative effect (SWCRE) anomalies observed by CERES/EBAF v4 are explained by observed average sea surface temperature and the difference between the warmest 30% where deep convection occurs and (SST#). Observed tropospheric temperatures show variations in boundary layer capping strength over time consistent with the evolution of SST#. The CERES/EBAF v4 data confirm that associated cloud fraction changes over the colder waters dominate SWCRE. This observational evidence for the “pattern effect” noted in GCM simulations suggests that SST# captures much of this effect. The observed sensitivities largely reflect ENSO. As El Niño develops, increases and SST# decreases (both increasing SWCRE). Only after the El Niño peak, SST# increases and SWCRE decreases. SST# is also relevant for the tropical temperature trend profile controversy, and the discrepancy between observed and modeled equatorial Pacific SST trends. Causality and implications for future climates are discussed.
The quasi-biennial oscillation (QBO) is a descending pattern of winds in the stratosphere that vanishes near the top of the tropical tropopause layer, even though the vertically-propagating waves that drive the QBO are thought to originate in the troposphere several kilometers below. The region where there is low QBO power despite sufficient vertically-propagating wave activity to drive a QBO is known as the buffer zone. Classical one-dimensional models of the QBO are ill-suited to represent buffer zone dynamics because they enforce the attenuation of the QBO via a zero-wind lower boundary condition. The formation of the buffer zone is investigated by analyzing momentum budgets in the reanalyses MERRA-2 and ERA-Interim. The buffer zone must be formed by weak wave-driven acceleration and/or cancellation of the wave-driven acceleration. This paper shows that in MERRA-2 weak wave-driven acceleration is insufficient to form the buffer zone, so cancellation of the wave-driven acceleration must play a role. The cancellation results from damping of angular momentum anomalies, primarily due to horizontal mean and horizontal eddy momentum flux divergence, with secondary contributions from the Coriolis torque and vertical mean momentum flux divergence. The importance of the damping terms highlights the role of the buffer zone as the mediator of angular momentum exchange between the QBO domain and the far field. Some far-field angular momentum anomalies reach the solid Earth, leading to the well-documented lagged correlation between the QBO and the length of day.
Tao, M, P Konopka, F Ploeger, Xiaolu Yan, Jonathon S Wright, M Diallo, Stephan Fueglistaler, and M Riese, May 2019: Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products. Atmospheric Chemistry and Physics, 19(9), DOI:10.5194/acp-19-6509-2019. Abstract
Stratospheric water vapor (SWV) plays important roles in the radiation budget and ozone chemistry and is a valuable tracer for understanding stratospheric transport. Meteorological reanalyses provide variables necessary for simulating this transport; however, even recent reanalyses are subject to substantial uncertainties, especially in the stratosphere. It is therefore necessary to evaluate the consistency among SWV distributions simulated using different input reanalysis products. In this study, we evaluate the representation of SWV and its variations on multiple timescales using simulations over the period 1980–2013. Our simulations are based on the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by horizontal winds and diabatic heating rates from three recent reanalyses: ERA-Interim, JRA-55 and MERRA-2. We present an intercomparison among these model results and observationally based estimates using a multiple linear regression method to study the annual cycle (AC), the quasi-biennial oscillation (QBO), and longer-term variability in monthly zonal-mean H2O mixing ratios forced by variations in the El Niño–Southern Oscillation (ENSO) and the volcanic aerosol burden. We find reasonable consistency among simulations of the distribution and variability in SWV with respect to the AC and QBO. However, the amplitudes of both signals are systematically weaker in the lower and middle stratosphere when CLaMS is driven by MERRA-2 than when it is driven by ERA-Interim or JRA-55. This difference is primarily attributable to relatively slow tropical upwelling in the lower stratosphere in simulations based on MERRA-2. Two possible contributors to the slow tropical upwelling in the lower stratosphere are suggested to be the large long-wave cloud radiative effect and the unique assimilation process in MERRA-2. The impacts of ENSO and volcanic aerosol on H2O entry variability are qualitatively consistent among the three simulations despite differences of 50 %–100 % in the magnitudes. Trends show larger discrepancies among the three simulations. CLaMS driven by ERA-Interim produces a neutral to slightly positive trend in H2O entry values over 1980–2013 (+0.01 ppmv decade−1), while both CLaMS driven by JRA-55 and CLaMS driven by MERRA-2 produce negative trends but with significantly different magnitudes (−0.22 and −0.08 ppmv decade−1, respectively).
Explosive volcanic eruptions have large climate impacts, and can serve as observable tests of the climatic response to radiative forcing. Using a high resolution climate model, we contrast the climate responses to Pinatubo, with symmetric forcing, and those to Santa Maria and Agung, which had meridionally asymmetric forcing. Although Pinatubo had larger global‐mean forcing, asymmetric forcing strongly shifts the latitude of tropical rainfall features, leading to larger local precipitation/TC changes. For example, North Atlantic TC activity over is enhanced/reduced by SH‐forcing (Agung)/NH‐forcing (Santa Maria), but changes little in response to the Pinatubo forcing. Moreover, the transient climate sensitivity estimated from the response to Santa Maria is 20% larger than that from Pinatubo or Agung. This spread in climatic impacts of volcanoes needs to be considered when evaluating the role of volcanoes in global and regional climate, and serves to contextualize the well‐observed response to Pinatubo.
Global climate models consensually predict that tropical rainfall will be distributed more unevenly with global warming, i.e., dry regions or months will get drier and wet regions or months will get wetter. Previous mechanisms such as ``dry‐get‐drier, wet‐get‐wetter", ``rich‐get‐richer", or ``upped‐ante" focus on the spatial pattern of rainfall changes rather than the changes in probability distribution. Here, we present a quantitative explanation of the warming induced probability distribution change of rainfall: Subcloud moist static energy (MSE) gradients are amplified by Clausius‐Clapeyron relationship given roughly uniform warming and constant relative humidity, therefore the present‐day wet regions will become more competitive for convection in a warmer world. Though changes in the atmospheric circulation pattern can enhance rainfall in one place and suppress rainfall in another, our results show that the total effect should be a decrease in the area of active convection even with uniform warming.
Dinh, Tra, and Stephan Fueglistaler, November 2017: Mechanism of Fast Atmospheric Energetic Equilibration Following Radiative Forcing by CO2. Journal of Advances in Modeling Earth Systems, 9(7), DOI:10.1002/2017MS001116. Abstract
In energetic equilibrium, the atmosphere's net radiative divergence (math formula) is balanced by sensible (math formula) and latent (math formula) heat fluxes, i.e. math formula. Radiative forcing from increasing CO2 reduces math formula, and the surface warming following an increase in CO2 is largely due to the reduction in atmospheric energy demand in math formula and math formula, with only a smaller surface radiative budget perturbation. With an idealized General Circulation Model, we show that the fast atmospheric adjustment at fixed surface temperature produces the required decrease in the sum of math formula and math formula through changes in the near-surface temperature and specific humidity. In layers near the surface, the reduced radiative cooling forces a temperature increase that leads to a negative Planck radiative feedback and, because of the reduced surface-atmosphere temperature difference, also to a reduction in sensible heat flux. In the free troposphere, the reduced radiative cooling leads to a weakening of the tropospheric circulation. Consequently, there is a decrease in the water flux exported from the layers near the surface, and as such in precipitation. By mass conservation, the near-surface specific humidity increases and surface evaporation decreases until it balances the reduced export flux. Other processes can amplify or dampen the responses in math formula and math formula and change the partitioning between these two fluxes, but by themselves do not ensure math formula.
This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over Northern Hemisphere extra-tropics both in the observations and climate model predictions. A suite of numerical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of the stratosphere in seasonal predictive skill of extra-tropical near surface land temperature. We show that most of the lead-0 month spring predictive skill of land temperature over extra-tropics, particularly over northern Eurasia, stems from stratospheric initialization. We further reveal that this predictive skill of extra-tropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical connection between the stratosphere and troposphere is also demonstrated by the significant correlation between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the stratospheric zonal wind anomalies to the lower troposphere.
Fueglistaler, Stephan, Claire Radley, and Isaac M Held, July 2015: The distribution of precipitation and the spread in tropical upper tropospheric temperature trends in CMIP5/AMIP simulations. Geophysical Research Letters, 42(14), DOI:10.1002/2015GL064966. Abstract
Reconciling observations and simulations of tropical upper tropospheric temperature trends remains an important problem in climate science. Examining atmospheric models running over observed sea surface temperatures (SSTs), Flannaghan et al. (2014) show that this reconciliation is affected by the SST data set used, and that a precipitation-weighted SST (PSST) is valuable in explaining this result. Here, we show that even for CMIP5 AMIP simulations forced with identical SSTs, tropical upper tropospheric temperature trends across models (and between ensemble members) show a substantial spread (standard deviation ~10% of the average trend). About 60% of this spread between ensemble means, as well as deviations from the ensemble means, can be explained by PSST calculated from the time-evolving precipitation in each model run. Both PSST and atmospheric temperature trends show statistical evidence for systematic differences between models. We conclude that the response of precipitation patterns to changes in SST patterns is a significant source of uncertainty for tropical temperature trends.
Joshi, M, M Stringer, Karin van der Wiel, A O'Callaghan, and Stephan Fueglistaler, April 2015: IGCM4: a fast, parallel and flexible intermediate climate model. Geoscientific Model Development, 8(4), DOI:10.5194/gmd-8-1157-2015. Abstract
The IGCM4 (Intermediate Global Circulation Model version 4) is a global spectral primitive equation climate model whose predecessors have extensively been used in fields such as climate dynamics, processes modelling, and atmospheric dynamics. The IGCM4's niche and utility lies in its parallel spectral dynamics and fast radiation scheme. Moist processes such as clouds, evaporation, and soil moisture are simulated in the model, though in a simplified manner compared to state-of-the-art GCMs. The latest version has been parallelised, which has led to massive speed-up and enabled much higher resolution runs than would be possible on one processor. It has also undergone changes such as alterations to the cloud and surface processes, and the addition of gravity wave drag. These changes have resulted in a significant improvement to the IGCM's representation of the mean climate as well as its representation of stratospheric processes such as sudden stratospheric warmings. The IGCM4's physical changes and climatology are described in this paper.
We use two-dimensional numerical simulations to study the impact of cloud radiative heating on transport timescales from the tropical upper troposphere to the stratosphere. Clouds are idealized as sources of radiative heating, and are stochastically distributed in space and time. A spatial probability function constrains clouds to occur in only part of the domain to depict heterogeneously distributed clouds in the atmosphere.
The transport time from the lower to upper boundaries (age of air) is evaluated with trajectories. We obtain bi-modal spectra of age of air, with the first mode composed of trajectories that remain in the cloudy part of the domain during their passages from the lower to upper boundaries. For these trajectories only, the mean age scales inversely the time-mean radiative heating in cloudy air, and the one-dimensional advection-diffusion equation provides an adequate model for transport. However, the exchange between the cloudy and cloud-free regions renders the mean age over all trajectories (including those that visit the cloud-free region) much longer. In addition, the overall mean age is not inversely proportional to the time-mean heating rate in cloudy air. Sensitivity calculations further show that the sizes, durations, and amplitudes of the individual clouds are also important to the transport time.
Our results show that the frequently used decomposition of radiative heating into clear-sky and cloud radiative heating may lead to misleading interpretations regarding the timescale of transport into the stratosphere.
Dinh, Tra, and Stephan Fueglistaler, October 2014: Microphysical, radiative and dynamical impacts of thin cirrus clouds on humidity in the tropical tropopause layer and lower stratosphere. Geophysical Research Letters, 41(19), DOI:10.1002/2014GL061289. Abstract
Cloud-resolving numerical simulations are carried out to study how in situ formed cirrus affect the humidity in the tropical tropopause layer and lower stratosphere. Cloud-induced impacts on the specific humidity are evaluated separately in terms of (i) the dehydration efficiency and (ii) the increase in the saturation mixing ratio associated with cloud radiatively induced temperature adjustment. The numerical results show that the dehydration efficiency of cirrus clouds, which is measured by the domain average relative humidity, varies within 100 ± 15% in all model configurations (with/ without heterogeneous ice nucleation, and with / without cloud radiative heating and cloud dynamics). A larger impact on the specific humidity comes from temperature increase (of a few Kelvins) induced by cloud heating. The latter is found to scale approximately linearly with the domain average ice mass. Resolving the cloud radiatively induced circulations approximately doubles the domain average ice mass and associated cloud-induced temperature change.
Dinh, Tra, Stephan Fueglistaler, D R Durran, and T P Ackerman, November 2014: Cirrus and water vapour transport in the tropical tropopause layer – Part 2: Roles of ice nucleation and sedimentation, cloud dynamics, and moisture conditions. Atmospheric Chemistry and Physics, 14(22), DOI:10.5194/acp-14-12225-2014. Abstract
A high-resolution, two-dimensional numerical model is used to study the moisture redistribution following homogeneous ice nucleation induced by Kelvin waves in the tropical tropopause layer (TTL). We compare results for dry/moist initial conditions and three levels of complexity for the representation of cloud processes: complete microphysics and cloud radiative effects, likewise but without radiative effects, and instantaneous removal of moisture in excess of saturation upon nucleation.
Cloud evolution and moisture redistribution are found to be sensitive to initial conditions and cloud processes. Ice sedimentation leads to a downward flux of water, whereas the cloud radiative heating induces upward advection of the cloudy air. The latter results in an upward (downward) flux of water vapour if the cloudy air is moister (drier) than the environment, which is typically when the environment is subsaturated (supersaturated).
Only a fraction (~25% or less) of the cloud experiences nucleation. Post-nucleation processes (ice depositional growth, sedimentation, and sublimation) are important to cloud morphology, and both dehydrated and hydrated layers may be indicators of TTL cirrus occurrence. The calculation with instantaneous removal of moisture not only misses the hydration but also underestimates dehydration due to (i) nucleation before reaching the minimum saturation mixing ratio, and (ii) lack of moisture removal from sedimenting ice particles below the nucleation level.
The sensitivity to initial conditions and cloud processes suggests that it is difficult to reach generic, quantitative estimates of cloud-induced moisture redistribution on the basis of case-by-case calculations.
Flannaghan, Thomas J., and Stephan Fueglistaler, May 2014: Vertical Mixing and the Temperature and Wind Structure of the Tropical Tropopause Layer. Journal of the Atmospheric Sciences, 71(5), DOI:10.1175/JAS-D-13-0321.1. Abstract
We show that vertical mixing can lead to significant momentum and heat fluxes in the tropical tropopause layer (TTL) and that these momentum and heat fluxes can force large climatological temperature and zonal wind changes in the TTL. We present the climatology of vertical mixing and associated momentum and heat fluxes as parametrised in the European Centre for Medium Range Weather Forecasting (ECMWF) Interim reanalysis and as parametrised by the mixing scheme currently used in the ECMWF operational analyses. Each scheme produces a very different climatology showing that the momentum and heat fluxes arising from vertical mixing are highly dependent on the scheme used. A dry GCM is then forced with momentum and heat fluxes similar to those seen in ERA-Interim to assess the potential impact of such momentum and heat fluxes. We find a significant response in the TTL, leading to a temperature perturbation of approximately 4 K, and a zonal wind perturbation of approximately 12 m s−1. These temperature and zonal wind perturbations are approximately zonally symmetric, are approximately linear perturbations to the unforced climatology, and are confined to the TTL between approximately 10°N and 10°S. There is also a smaller amplitude tropospheric component to the response. Our results indicate that vertical mixing can have a large but uncertain effect on the TTL, and that choice and impact of the vertical mixing scheme should be an important consideration when modelling the TTL.
Flannaghan, Thomas J., Stephan Fueglistaler, Isaac M Held, S Po-Chedley, Bruce Wyman, and Ming Zhao, December 2014: Tropical temperature trends in Atmospheric General Circulation Model simulations and the impact of uncertainties in observed SSTs. Journal of Geophysical Research: Atmospheres, 119(23), DOI:10.1002/2014JD022365. Abstract
The comparison of trends in various climate indices in observations and models is of fundamental importance for judging the credibility of climate projections. Tropical tropospheric temperature trends have attracted particular attention as this comparison may suggest a model deficiency [Santer et al., 2005; Christy et al., 2007, 2010; Fu et al., 2011; Thorne et al., 2011]. One can think of this problem as composed of two parts: one focused on tropical surface temperature trends and the associated issues related to forcing, feedbacks, and ocean heat uptake; and a second part focusing on connections between surface and tropospheric temperatures and the vertical profile of trends in temperature. Here, we focus on the atmospheric component of the problem. We show that two ensembles of GFDL HiRAM model runs (similar results are shown for NCAR's CAM4 model) with different commonly used prescribed sea surface temperatures (SSTs), namely the HadISST1 and ‘Hurrell’ data sets, have a difference in upper tropical tropospheric temperature trends (~0.1 K/decade at 300 hPa for the period 1984-2008) that is about a factor 3 larger than expected from moist adiabatic scaling of the tropical average SST trend difference. We show that this surprisingly large discrepancy in temperature trends is a consequence of SST trend differences being largest in regions of deep convection. Further, trends, and the degree of agreement with observations, not only depend on SST data set and the particular atmospheric temperature data set, but also on the period chosen for comparison. Due to the large impact on atmospheric temperatures, these systematic uncertainties in SSTs need to be resolved before the fidelity of climate models’ tropical temperature trend profiles can be assessed.
Fueglistaler, Stephan, Y-S Liu, and Thomas J Flannaghan, et al., February 2014: Departure from Clausius-Clapeyron scaling of water entering the stratosphere in response to changes in tropical upwelling. Journal of Geophysical Research: Atmospheres, 119(4), DOI:10.1002/2013JD020772. Abstract
Water entering the stratosphere ([H2O]entry) is strongly constrained by temperatures in the tropical tropopause layer (TTL). Temperatures at tropical tropopause levels are 15–20 K below radiative equilibrium. A strengthening of the residual circulation as suggested by general circulation models in response to increasing greenhouse gases is, based on radiative transfer calculations, estimated to lead to a temperature decrease of about 2 K per 10% change in upwelling (with some sensitivity to vertical scale length). For a uniform temperature change in the inner tropics, [H2O]entry may be expected to change as predicted by the temperature dependence of the vapor pressure, referred here as “Clausius-Clapeyron (CC) scaling.” Under CC scaling, this corresponds to ∼1 ppmv change in [H2O]entry per 10% change in upwelling. However, the change in upwelling also changes the residence time of air in the TTL. We show with trajectory calculations that this affects [H2O]entry, such that [H2O]entry changes ∼10 % less than expected from CC scaling. This residence time effect for water vapor is a consequence of the spatiotemporal variance in the temperature field. We show that for the present-day TTL, a little more than half of the effect is due to the systematic relation between flow and temperature field. The remainder can be understood from the perspective of a random walk problem, with slower ascent (longer path) increasing each air parcel's probability to encounter anomalously low temperatures. Our results show that atmospheric water vapor may depart from CC scaling with mean temperatures even when all physical processes of dehydration remain unchanged.
Fueglistaler, Stephan, Marta Abalos, Thomas J Flannaghan, Pu Lin, and W J Randel, December 2014: Variability and trends in dynamical forcing of tropical lower stratospheric temperatures. Atmospheric Chemistry and Physics, 14(24), DOI:10.5194/acp-14-13439-2014. Abstract
We analyse the relation between tropical lower stratospheric temperatures and dynamical forcing over the period 1980–2011 using NCEP, MERRA and ERA-Interim reanalyses. The tropical mean thermodynamic energy equation with Newtonian cooling for radiation is forced with two dynamical predictors: (i) the average eddy heat flux of both hemispheres; and (ii) tropical upwelling estimated from momentum balance following Randel et al. (2002). The correlation (1995–2011) for deseasonalised tropical average temperatures at 70 hPa with the eddy heat flux based predictor is 0.84 for ERA-Interim (0.77 for the momentum balance calculation), and 0.87 for MERRA. The eddy heat flux based predictor indicates a dynamically forced cooling of the tropics of ∼−0.1 K decade−1 (∼−0.2 K decade−1 excluding volcanic periods) for the period 1980–2011 in MERRA and ERA-Interim. ERA-Interim eddy heat fluxes drift slightly relative to MERRA in the 2000's, possibly due to onset of GPS temperature data assimilation. While NCEP gives a small warming trend, all 3 reanalyses show a similar seasonality, with strongest cooling in January/February (∼−0.4 K decade−1, from northern hemispheric forcing) and October (∼−0.3 K decade−1, from southern hemispheric forcing). Months preceding and following the peaks in cooling trends show pronounced smaller, or even warming, trends. Consequently, the seasonality in the trends arises in part due to a temporal shift in eddy activity. Over all months, the Southern Hemisphere contributes more to the tropical cooling in both MERRA and ERA-Interim. The residual time series (observed minus estimate of dynamically forced temperature) are well correlated between ERA-Interim and MERRA, with differences largely due to temperature differences. The residual time series is dominated by the modification of the radiative balance by volcanic aerosol following the eruption of El Chichon (maximum warming of ∼3 K at 70 hPa) and Pinatubo (maximum warming of ∼4 K at 70 hPa), with a strong dynamical response during Pinatubo partially masking the aerosol heating.
Gomez-Escolar, M, Natalia Calvo, D Barriopedro, and Stephan Fueglistaler, June 2014: Tropical Response to Stratospheric Sudden Warmings and its modulation by the QB. Journal of Geophysical Research: Atmospheres, 119(12), DOI:10.1002/2013JD020560. Abstract
Major Stratospheric Sudden Warmings (SSWs) are characterized by a reversal of the zonal mean zonal wind and an anomalous warming in the polar stratosphere that proceeds downwards to the lower stratosphere. In the tropical stratosphere, a downward propagating cooling is observed. However, the strong modulation of tropical winds and temperatures by the Quasi-biennial Oscillation (QBO) renders accurate characterization of the tropical response to SSWs challenging. A novel metric based on temperature variations relative to the central date of the SSW using ERA-Interim data is presented. It filters most of the temperature structure related to the phase of the QBO and provides proper characterization of the SSW cooling amplitude and downward propagation tropical signal.
Using this new metric, a large SSW-related cooling is detected in the tropical upper stratosphere that occurs almost simultaneously with the polar cap warming. The tropical cooling weakens as it propagates downwards, reaching the lower stratosphere in a few days. Substantial differences are found in the response to SSWs depending on the QBO phase. Similar to what is observed in the polar stratosphere, tropical SSW-associated temperatures persist longer during the west QBO phase at levels above about 40 hPa, suggesting that the signal is mainly controlled by changes in the residual mean meridional circulation associated with SSWs. Conversely, in the lower stratosphere, around 50–70 hPa, enhanced cooling occurs only during QBO east phase. This behavior seems to be driven by anomalous subtropical wave breaking related to changes in the zero-wind line position with the QBO phase.
An idealized general circulation model with an analytically described Newtonian cooling term is employed to study the occurrence rate of sudden stratospheric warmings (SSWs) over a wide range of parameters. In particular, the sensitivity of the SSW occurrence rates to orographic forcing and both relaxation temperature and damping rate is evaluated. The stronger the orographic forcing and the weaker radiative forcing (in both temperature and damping rate), the higher the SSW frequency. The separate effects of the damping rates at low and high latitudes are somewhat more complex. Generally, lower damping rates result in higher SSW frequency. However, if the low and high latitude damping rates are not the same, SSW frequency tends to be most sensitive to a fractional change in the lower of the two damping rates. In addition, the effect of the damping rates on the stratospheric residual circulation is investigated. It is found that higher high-latitude damping rate results in deeper but narrower circulation, whereas higher low-latitude damping rates cause strengthening of the streamfunction in the tropical mid to upper stratosphere. Finally, the relation between easily measured and compared climatological fields and the SSW occurrence rate is determined. The average stratospheric polar zonal mean zonal wind shows a strong anti-correlation with the SSW frequency. In the troposphere, there is a high correlation between the meridional temperature gradient and SSW frequency, suggesting that the strength of synoptic activity in the troposphere may be an important influence on SSW occurrence.
We use observations and four GFDL AGCMs to analyze the relation between variations in spatial patterns and area-averaged quantities in the top-of-atmosphere radiative fluxes, cloud amount and precipitation related to El Niño over the period 1979-2008. El Niño is associated with an increase in tropical average sea surface temperature of order +0.1K (with a maxima of +0.5K), large local anomalies of +2K (maxima +6K), and tropical tropospheric warming of +0.5K (maxima +1K). We find that model-to-observation biases in the base state translate into corresponding biases in anomalies in response to El Niño. The pattern and amplitude of model biases in reected shortwave (SW) and outgoing longwave radiation (OLR) follows expectations based on their biases in cloud amount: models with a positive cloud amount bias, compared to observations, have too strong local responses to El Niño in cloud amount, SW, OLR and precipitation.
Tropical average OLR increases in response to El Niño in observations and models (correlation coefficients (r) with Niño 3.4 Index in range 0.4 to 0.6). Weaker correlations are found for SW (r: -0.6 to 0), cloud amount (r: -0.2 to +0.1) and precipitation (r: -0.2 to 0). Compositing El Niño events over the period 2001-2007 yields similar results. These results are consistent with El Niño periods being warmer due to a heat pulse from the ocean, and a weak response in clouds and their radiative effect. These weak responses occur despite a large rearrangement in the spatial structure of the tropical circulation, and despite substantial differences in the mean state of observations and models.
Radley, Claire, and Stephan Fueglistaler, July 2014: The role of large-scale convective organization for tropical high cloud amount. Geophysical Research Letters, 41(14), DOI:10.1002/2014GL060904. Abstract
Tropical high clouds are closely coupled to deep convection, but local cloud amount and convective mass flux are non-linearly related. We use the GFDL-AM2 model forced with idealized SST perturbations to study the sensitivity of high clouds to the large-scale distribution of convection. Increasing/decreasing the SST contrast between convective and non-convective regions decreases/increases the tropical deep convective area, and warming of convective areas decreases the tropical average convective mass flux (〈mc〉). In all experiments, fractional high cloud amount changes are less than fractional changes in 〈mc〉. High cloud amount is half as sensitive as expected from the climatological average cloud amount, as a function of convective mass flux, due to strong compensation from non-convective high clouds. The latter results from changes in relative humidity related to the change in 〈mc〉. This effect renders high cloud amount remarkably robust to perturbations, though radiative effects of convective and non-convective clouds will differ.
We analyze the relation between atmospheric temperature and water vapor—a fundamental component of the global climate system—for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980–2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higher-frequency variations (periods up to 2–3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer from artifacts that need to be resolved in order to answer the question whether the large-scale flow and temperature field is sufficient to explain water entering the stratosphere.
We explore the maintenance of the stratospheric structure in a primitive equation model that is forced by a Newtonian cooling with a prescribed radiative equilibrium temperature field. Models such as this are well suited to analyze and address questions regarding the nature of wave propagation and troposphere-stratosphere interactions. We focus on the lower to mid-stratosphere, and take the mean annual cycle, with its large interhemispheric variations in radiative background state and forcing, as a benchmark that we would like to simulate with reasonable verisimilitude. A reasonably realistic basic stratospheric temperature structure is a necessary first step in understanding stratospheric dynamics.
We first show that using a realistic radiative background temperature field based on radiative transfer calculations substantially improves the basic structure of the model stratosphere compared to previously used setups. We then explore what physical processes are needed to maintain the seasonal cycle of temperature in the lower stratosphere. We find that an improved stratosphere and a seasonally varying topographically-forced stationary waves are, in themselves, insufficient to produce a seasonal cycle of sufficient amplitude in the tropics, even if the topographic forcing is large. We show that upwelling associated with baroclinic wave activity is an important influence on the tropical lower stratosphere, and that the seasonal variation of tropospheric baroclinic activity contributes significantly to the seasonal cycle of the lower tropical stratosphere. Given a reasonably realistic basic stratospheric structure and a seasonal cycle in both stationary wave activity and tropospheric baroclinic instability we are able to obtain a seasonal cycle in the lower stratosphere of amplitude comparable to the observations.
Impacts of tropical temperature changes in the upper troposphere (UT) and the tropical tropopause layer (TTL) on tropical cyclone (TC) activity are explored. UT and lower TTL cooling both lead to an overall increase in potential intensity (PI), while temperatures 70hPa and higher have negligible effect. Idealized experiments with a high-resolution global model show that lower temperatures in the UT are associated with increases in global and North Atlantic TC frequency, but modeled TC frequency changes are not significantly affected by TTL temperature changes nor do they scale directly with PI.
Future projections of hurricane activity have been made with models that simulate the recent upward Atlantic TC trends while assuming or simulating very different tropical temperature trends. Recent Atlantic TC trends have been simulated by: i) high-resolution global models with nearly moist-adiabatic warming profiles, and ii) regional TC downscaling systems that impose the very strong UT and TTL trends of the NCEP Reanalysis, an outlier among observational estimates. Impact of these differences in temperature trends on TC activity is comparable to observed TC changes, affecting assessments of the connection between hurricanes and climate. Therefore, understanding the character of and mechanisms behind changes in UT and TTL temperature is important to understanding past and projecting future TC activity changes. We conclude that the UT and TTL temperature trends in NCEP are unlikely to be accurate, and likely drive spuriously positive TC and PI trends, and an inflated connection between absolute surface temperature warming and TC activity increases.
Wright, Jonathon S., and Stephan Fueglistaler, September 2013: Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 13(18), DOI:10.5194/acp-13-9565-2013. Abstract
We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: the Modern-Era Retrospective Analysis for Research and Applications (MERRA), European Reanalysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), Japanese 25-yr Reanalysis and Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS), and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Discrepancies in latent heating reflect continuing difficulties in representing moist convection in models. Although these discrepancies may be expected, their magnitude is still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention). The largest differences in radiative heating in the tropical UTLS are attributable to differences in cloud radiative heating, but important systematic differences are present even in the absence of clouds. Local maxima in heating and cooling due to parameterised turbulent mixing occur in the vicinity of the tropical tropopause.