Global storm-resolving models (GSRMs) that can explicitly resolve some of deep convection are now being integrated for climate timescales. GSRMs are able to simulate more realistic precipitation distributions relative to traditional Coupled Model Intercomparison Project 6 (CMIP6) models. In this study, we present results from two-year-long integrations of a GSRM developed at Geophysical Fluid Dynamics Laboratory, eXperimental System for High-resolution prediction on Earth-to-Local Domains (X-SHiELD), for the response of precipitation to sea surface temperature warming and an isolated increase in CO2 and compare it to CMIP6 models. At leading order, X-SHiELD's response is within the range of the CMIP6 models. However, a close examination of the precipitation distribution response reveals that X-SHiELD has a different response at lower percentiles and the response of the extreme events are at the lower end of the range of CMIP6 models. A regional decomposition reveals that the difference is most pronounced for midlatitude land, where X-SHiELD shows a lower increase at intermediate percentiles and drying at lower percentiles.
The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model results can build confidence in the existing climate models or highlight important areas for additional research. This GSRM’s climate sensitivity is within the range of conventional climate models, although on the lower end as the result of neutral, rather than amplifying, shortwave feedbacks. Its radiative forcing from carbon dioxide is higher than conventional climate models, and this arises from a bias in climatological clouds and an explicitly simulated high-cloud adjustment. Last, the pattern and magnitude of relative humidity changes, simulated with greater fidelity via explicitly resolving convection, are notably similar to conventional climate models.
Changes in tropical deep convection with global warming are a leading source of uncertainty for future climate projections. A comparison of the responses of active sensor measurements of cloud ice to interannual variability and next-generation global storm-resolving model (also known as k-scale models) simulations to global warming shows similar changes for events with the highest column-integrated ice. The changes reveal that the ice loading decreases outside the most active convection but increases at a rate of several percent per Kelvin surface warming in the most active convection. Disentangling thermodynamic and vertical velocity changes shows that the ice signal is strongly modulated by structural changes of the vertical wind field towards an intensification of strong convective updrafts with warming, suggesting that changes in ice loading are strongly influenced by changes in convective velocities, as well as a path toward extracting information about convective velocities from observations.
Intense convection (updrafts exceeding 10 m s−1) plays an essential role in severe weather and Earth's energy balance. Despite its importance, how the global pattern of intense convection changes in response to warmed climates remains unclear, as simulations from traditional climate models are too coarse to simulate intense convection. Here we use a kilometer-scale global storm resolving model (GSRM) and conduct year-long simulations of a control run, forced by analyzed sea surface temperature (SST), and one with a 4 K increase in SST. Comparisons show that the increased SST enhances the frequency of intense convection globally with large spatial and seasonal variations. Changes in the spatial pattern of intense convection are associated with changes in planetary circulation. Increases in the intense convection frequency do not necessarily reflect increases in convective available potential energy. The GSRM results are also compared with previously published traditional climate model projections.
Bolot, Maximilien, and Stephan Fueglistaler, March 2020: Reduction of bias from parameter variance in geophysical data estimation: method and application to ice water content and sedimentation flux estimated from lidar. Journal of the Atmospheric Sciences, 77(3), DOI:10.1175/JAS-D-19-0106.1. Abstract
This paper addresses issues of statistical misrepresentation of the a priori parameters (henceforth called ancillary parameters) used in geophysical data estimation. Parametrizations using ancillary data are frequently needed to derive geophysical data of interest from remote measurements. Empirical fits to the ancillary data that do not preserve the distribution of such data may induce substantial bias. A semi-analytical averaging approach based on Taylor expansion is presented to improve estimated cirrus ice water content and sedimentation flux for a range of volume extinction coefficients retrieved from space-borne lidar observations by CALIOP combined with the estimated distribution of ancillary data from in situ aircraft measurements of ice particle microphysical parameters and temperature. It is shown that, given an idealized distribution of input parameters, the approach performs well against Monte Carlo benchmark predictions. Using examples with idealized distributions at the mean temperature for the tropics at 15 km, it is estimated that the commonly neglected variance observed in in situ measurements of effective diameters may produce a worst-case estimation bias spanning up to a factor of two. For ice sedimentation flux, a similar variance in particle size distributions and extinctions produces a worst-case estimation bias of a factor of nine. The value of the bias is found to be mostly set by the correlation coefficient between extinction and ice effective diameter, which in this test ranged between all possible values. Systematic reporting of variances and covariances in the ancillary data and between data and observed quantities would allow for more accurate observational estimates.