We describe the baseline model configuration and simulation characteristics of the Geophysical Fluid Dynamics Laboratory (GFDL)'s Land Model version 4.1 (LM4.1), which builds on component and coupled model developments over 2013–2019 for the coupled carbon-chemistry-climate Earth System Model Version 4.1 (ESM4.1) simulation as part of the sixth phase of the Coupled Model Intercomparison Project. Analysis of ESM4.1/LM4.1 is focused on biophysical and biogeochemical processes and interactions with climate. Key features include advanced vegetation dynamics and multi-layer canopy energy and moisture exchanges, daily fire, land use representation, and dynamic atmospheric dust coupling. We compare LM4.1 performance in the GFDL Earth System Model (ESM) configuration ESM4.1 to the previous generation component LM3.0 in the ESM2G configuration. ESM4.1/LM4.1 provides significant improvement in the treatment of ecological processes from GFDL's previous generation models. However, ESM4.1/LM4.1 likely overestimates the influence of land use and land cover change on vegetation characteristics, particularly on pasturelands, as it overestimates the competitiveness of grasses versus trees in the tropics, and as a result, underestimates present-day biomass and carbon uptake in comparison to observations.
In comprehensive and idealized general circulation models, hemispherically asymmetric forcings lead to shifts in the latitude of the Intertropical Convergence Zone (ITCZ). Prior studies using comprehensive GCMs (with complicated parameterizations of radiation, clouds, and convection) suggest that the water vapor feedback tends to amplify the movement of the ITCZ in response to a given hemispherically asymmetric forcing, but this effect has yet to be elucidated in isolation. This study uses an idealized moist model, coupled to a full radiative transfer code, but without clouds, to examine the role of the water vapor feedback in a targeted manner.
In experiments with interactive water vapor and radiation, the ITCZ latitude shifts roughly twice as much off the equator as in cases with the water vapor field seen by the radiation code prescribed to a static hemisperically-symmetric control distribution. Using energy flux equator theory for the latitude of the ITCZ, the amplification of the ITCZ shift is attributed primarily to the longwave water vapor absorption associated with the movement of the ITCZ into the warmer hemisphere, further increasing the net column heating asymmetry. Local amplification of the imposed forcing by the shortwave water vapor feedback plays a secondary role. Experiments varying the convective relaxation time, an important parameter in the convection scheme used in the idealized moist model, yield qualitatively similar results, suggesting some degree of robustness to the model physics; however, the sensitivity experiments do not preclude that more extreme modifications to the convection scheme could lead to qualitatively different behavior.
In this two-part paper, a description is provided of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). This version, with roughly 100km horizontal resolution and 33 levels in the vertical, contains an aerosol model that generates aerosol fields from emissions and a “light” chemistry mechanism designed to support the aerosol model but with prescribed ozone. In Part I, the quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode – with prescribed sea surface temperatures (SSTs) and sea ice distribution – is described and compared with previous GFDL models and with the CMIP5 archive of AMIP simulations. The model's Cess sensitivity (response in the top-of-atmosphere radiative flux to uniform warming of SSTs) and effective radiative forcing are also presented. In Part II, the model formulation is described more fully and key sensitivities to aspects of the model formulation are discussed, along with the approach to model tuning.
In Part II of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part I. Part II provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
“LM3” is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and extend the scope of the predecessor Land Dynamics (LaD) and LM3V models, by quantifying better the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multi-layer representations of temperature, liquid-water content, and ice content of both snow pack and macroporous soil/bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in the model LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial step-wise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (>>300 y) model spin-up times.
We describe carbon system formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate good climate fidelity as described in Part I while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences in simulation characteristics of these two models are described. Due to differences in oceanic ventilation rates (Part I) ESM2M has a stronger biological carbon pump but weaker northward implied atmospheric CO2 transport than ESM2G. The major advantages of ESM2G over ESM2M are: improved representation of surface chlorophyll in the Atlantic and Indian Oceans and thermocline nutrients and oxygen in the North Pacific. Improved tree mortality parameters in ESM2G produced more realistic carbon accumulation in vegetation pools. The major advantages of ESM2M over ESM2G are reduced nutrient and oxygen biases in the Southern and Tropical Oceans.
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
Heng, K, K Menou, and Peter Phillipps, June 2011: Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers. Monthly Notices of the Royal Astronomical Society, 413(4), DOI:10.1111/j.1365-2966.2011.18315.x. Abstract
The rapid pace of extrasolar planet discovery and characterization is legitimizing the study of their atmospheres via three-dimensional numerical simulations. The complexity of atmospheric modelling and its inherent non-linearity, together with the limited amount of data available, motivate model intercomparisons and benchmark tests. In the geophysical community, the Held-Suarez test is a standard benchmark for comparing dynamical core simulations of the Earth's atmosphere with different solvers, based on statistically averaged flow quantities. In the present study, we perform analogues of the Held-Suarez test for tidally locked exoplanets with the Geophysical Fluid Dynamics Laboratory (GFDL) Princeton Flexible Modelling System (fms) by subjecting both the spectral and finite difference dynamical cores to a suite of tests, including the standard benchmark for the Earth, a hypothetical tidally locked Earth, a 'shallow' hot Jupiter model and a 'deep' model of HD 209458b. We find qualitative and quantitative agreement between the solvers for the Earth, tidally locked Earth and shallow hot Jupiter benchmarks, but the agreement is less than satisfactory for the deep model of HD 209458b. Further investigation reveals that closer agreement may be attained by arbitrarily adjusting the values of the horizontal dissipation parameters in the two solvers, but it remains the case that the magnitude of the horizontal dissipation is not easily specified from first principles. Irrespective of radiative transfer or chemical composition considerations, our study points to limitations in our ability to accurately model hot Jupiter atmospheres with meteorological solvers at the level of 10 per cent for the temperature field and several tens of per cent for the velocity field. Direct wind measurements should thus be particularly constraining for the models. Our suite of benchmark tests also provides a reference point for researchers wishing to adapt their codes to study the atmospheric circulation regimes of tidally locked Earths/Neptunes/Jupiters.
Heng, K, D M W Frierson, and Peter Phillipps, December 2011: Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment. Monthly Notices of the Royal Astronomical Society, 418(4), DOI:10.1111/j.1365-2966.2011.19658.x. Abstract
Improving upon our purely dynamical work, we present three-dimensional simulations of the atmospheric circulation on Earth-like (exo)planets and hot Jupiters using the Geophysical Fluid Dynamics Laboratory (GFDL)-Princeton Flexible Modelling System (fms). As the first steps away from the dynamical benchmarks of Heng, Menou & Phillipps, we add dual-band radiative transfer and dry convective adjustment schemes to our computational set-up. Our treatment of radiative transfer assumes stellar irradiation to peak at a wavelength shorter than and distinct from that at which the exoplanet re-emits radiation (‘shortwave’ versus ‘longwave’), and also uses a two-stream approximation. Convection is mimicked by adjusting unstable lapse rates to the dry adiabat. The bottom of the atmosphere is bounded by a uniform slab with a finite thermal inertia. For our models of hot Jupiter, we include an analytical formalism for calculating temperature–pressure profiles, in radiative equilibrium, which accounts for the effect of collision-induced absorption via a single parameter. We discuss our results within the context of the following: the predicted temperature–pressure profiles and the absence/presence of a temperature inversion; the possible maintenance, via atmospheric circulation, of the putative high-altitude, shortwave absorber expected to produce these inversions; the angular/temporal offset of the hotspot from the substellar point, its robustness to our ignorance of hyperviscosity and hence its utility in distinguishing between different hot Jovian atmospheres; and various zonal-mean flow quantities. Our work bridges the gap between three-dimensional simulations which are purely dynamical and those which incorporate multiband radiative transfer, thus contributing to the construction of a required hierarchy of three-dimensional theoretical models.
Phillipps, Peter, and Isaac M Held, 1994: The response to orbital pertubations in an atmospheric model coupled to a slab ocean. Journal of Climate, 7(5), 767-782. Abstract PDF
The sensitivity of an atmospheric GCM coupled to a mixed-layer ocean to changes in orbital parameters is investigated. Three experiments are compared. One has perihelion at summer solstice and a large obliquity; another has perihelion at winter solstice and low obliquity. The first of these is favorable for warm summers; the second for cool summers. A third experiment, with perihelion at summer solstice and the lower value of obliquity, is used to examine the relative importance of the changes in perihelion and obliquity. The eccentricity is set at 0.04 in all cases.
Surface temperature responses are as large as 15°C, with the largest response over North America in summer. Changes in monsoons and Arctic sea ice are consistent with previous GCM studies. A perpetual summer version of the atmospheric model is used to investigate the positive feedback due to soil moisture. Drying of the soil over North America is found to increase the temperature response by approximately 50% and is also essential to the decrease in summertime precipitation in that region. Soil moisture changes also enhance the precipitation response over central Africa, but have little effect on the model's Asian monsoon.
The orbital parameters most favorable for expansion of the Northern Hemisphere glaciers, that is, minimal seasonality, do not produce permanent snow cover. Several model deficiencies that act to accelerate the melting of snow in spring may be responsible.
Held, Isaac M., and Peter Phillipps, 1993: Sensitivity of the eddy momentum flux to meridional resolution in atmospheric GCMs. Journal of Climate, 6(3), 499-507. Abstract PDF
GCM experiments with zonally symmetric climates are used to demonstrate that the increase in the meridional eddy momentum fluxes and zonal surface winds that occurs when resolution is increased is primarily due to the increase in meridional rather than zonal resolution. It is argued that the sensitivity to meridional resolution reflects the need to resolve the small scales generated in the Rossby wave field as waves radiate from the midlatitude baroclinic eddy source region into regions with small mean winds. Some additional experiments highlight the sensitivity of surface winds and eddy momentum fluxes to the subgrid-scale horizontal mixing formulation in low-resolution models.
Held, Isaac M., and Peter Phillipps, 1990: A barotropic model of the interaction between the Hadley cell and a Rossby wave. Journal of the Atmospheric Sciences, 47(7), 856-869. Abstract PDF
A barotropic model is described that is designed to study the interaction of the Hadley cell with a Rossby wave forced in midlatitudes by a stationary "topographic" source. The Hadley cell is driven by a mass source/sink that is partly fixed, representing solar heating, and partly dependent on the layer thickness, representing infrared cooling. The response of the mean zonal and meridional winds to infinitesimal wave forcing is analyzed in detail; then the forcing is gradually increased to examine the departures from linearity.
An example of the barotropic decay of wavelike midlatitude disturbance in the presence of a shear flow on the sphere is examined. The linear theory for the evolution of the disturbance is first described, with emphasis on the importance of the pseudomomentum spectrum for the resulting drag on the mean flow. After a brief discussion of the ways in which this linear theory can break down, a high-resolution nonlinear numerical model is used to examine the dependence of the mean-flow modification and the qualitative character of the decay on the amplitude of the initial disturbance.