We describe the baseline coupled model configuration and simulation characteristics of GFDL's Earth System Model Version 4.1 (ESM4.1), which builds on component and coupled model developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation contributing to the sixth phase of the Coupled Model Intercomparison Project. In contrast with GFDL's CM4.0 development effort that focuses on ocean resolution for physical climate, ESM4.1 focuses on comprehensiveness of Earth system interactions. ESM4.1 features doubled horizontal resolution of both atmosphere (2° to 1°) and ocean (1° to 0.5°) relative to GFDL's previous‐generation coupled ESM2‐carbon and CM3‐chemistry models. ESM4.1 brings together key representational advances in CM4.0 dynamics and physics along with those in aerosols and their precursor emissions, land ecosystem vegetation and canopy competition, and multiday fire; ocean ecological and biogeochemical interactions, comprehensive land‐atmosphere‐ocean cycling of CO2, dust and iron, and interactive ocean‐atmosphere nitrogen cycling are described in detail across this volume of JAMES and presented here in terms of the overall coupling and resulting fidelity. ESM4.1 provides much improved fidelity in CO2 and chemistry over ESM2 and CM3, captures most of CM4.0's baseline simulations characteristics, and notably improves on CM4.0 in (1) Southern Ocean mode and intermediate water ventilation, (2) Southern Ocean aerosols, and (3) reduced spurious ocean heat uptake. ESM4.1 has reduced transient and equilibrium climate sensitivity compared to CM4.0. Fidelity concerns include (1) moderate degradation in sea surface temperature biases, (2) degradation in aerosols in some regions, and (3) strong centennial scale climate modulation by Southern Ocean convection.
We describe GFDL's CM4.0 physical climate model, with emphasis on those aspects that may be of particular importance to users of this model and its simulations. The model is built with the AM4.0/LM4.0 atmosphere/land model and OM4.0 ocean model. Topics include the rationale for key choices made in the model formulation, the stability as well as drift of the pre‐industrial control simulation, and comparison of key aspects of the historical simulations with observations from recent decades. Notable achievements include the relatively small biases in seasonal spatial patterns of top‐of‐atmosphere fluxes, surface temperature, and precipitation; reduced double Intertropical Convergence Zone bias; dramatically improved representation of ocean boundary currents; a high quality simulation of climatological Arctic sea ice extent and its recent decline; and excellent simulation of the El Niño‐Southern Oscillation spectrum and structure. Areas of concern include inadequate deep convection in the Nordic Seas; an inaccurate Antarctic sea ice simulation; precipitation and wind composites still affected by the equatorial cold tongue bias; muted variability in the Atlantic Meridional Overturning Circulation; strong 100 year quasi‐periodicity in Southern Ocean ventilation; and a lack of historical warming before 1990 and too rapid warming thereafter due to high climate sensitivity and strong aerosol forcing, in contrast to the observational record. Overall, CM4.0 scores very well in its fidelity against observations compared to the Coupled Model Intercomparison Project Phase 5 generation in terms of both mean state and modes of variability and should prove a valuable new addition for analysis across a broad array of applications.
The continual growth in the availability, detail, and wealth of environmental data provides an invaluable asset to improve the characterization of land heterogeneity in Earth System models – a persistent challenge in macroscale models. However, due to the nature of these data (volume and complexity) and the computational constraints of macroscale models, until now these data have been underutilized for global applications. As a proof of concept, this study explores over a 1/4 degree (~ 25 km) grid cell in southeastern California how to effectively and efficiently harness these data in Earth System models. First, a novel hierarchical multivariate clustering approach (HMC) is used to summarize the high dimensional environmental data space into hydrologically interconnected representative clusters (i.e., tiles). These tiles and their associated properties are then used to parameterize the sub-grid heterogeneity of the Geophysical Fluid Dynamics Laboratory (GFDL) LM4-HB land model. To assess how this data-driven approach to assemble the model tiles impacts the simulated water, energy, and carbon cycles, model experiments are run using a series of different tile configurations assembled by HMC. The results over the 1/4 degree macroscale grid cell and the underlying 30-meter fine-scale grid in southeastern California show that: 1) the observed similarity over the landscape makes it possible to robustly account for the role of multi-scale heterogeneity in the macroscale states and fluxes with around 300 sub-grid land model tiles; 2) assembling the sub-grid tiles from observed data, at times, leads to noticeable differences in the macroscale water, energy, and carbon cycles; for example, explicit subsurface interactions between the tiles leads to a dampening of macroscale extremes; 3) connecting the fine-scale grid to the model tiles via HMC enables circumventing the classic scale discrepancies between the macroscale and field-scale estimates; this has potentially significant implications for the evaluation and application of Earth System models.